Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
J Environ Sci (China) ; 147: 268-281, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003046

ABSTRACT

The study of microbial hydrocarbons removal is of great importance for the development of future bioremediation strategies. In this study, we evaluated the removal of a gaseous mixture containing toluene, m-xylene, ethylbenzene, cyclohexane, butane, pentane, hexane and heptane in aerated stirred bioreactors inoculated with Rhodococcus erythropolis and operated under non-sterile conditions. For the real-time measurement of hydrocarbons, a novel systematic approach was implemented using Selected-Ion Flow Tube Mass Spectrometry (SIFT-MS). The effect of the carbon source (∼9.5 ppmv) on (i) the bioreactors' performance (BR1: dosed with only cyclohexane as a single hydrocarbon versus BR2: dosed with a mixture of the 8 hydrocarbons) and (ii) the evolution of microbial communities over time were investigated. The results showed that cyclohexane reached a maximum removal efficiency (RE) of 53% ± 4% in BR1. In BR2, almost complete removal of toluene, m-xylene and ethylbenzene, being the most water-soluble and easy-to-degrade carbon sources, was observed. REs below 32% were obtained for the remaining compounds. By exposing the microbial consortium to only the five most recalcitrant hydrocarbons, REs between 45% ± 5% and 98% ± 1% were reached. In addition, we observed that airborne microorganisms populated the bioreactors and that the type of carbon source influenced the microbial communities developed. The abundance of species belonging to the genus Rhodococcus was below 10% in all bioreactors at the end of the experiments. This work provides fundamental insights to understand the complex behavior of gaseous hydrocarbon mixtures in bioreactors, along with a systematic approach for the development of SIFT-MS methods.


Subject(s)
Biodegradation, Environmental , Bioreactors , Hydrocarbons , Rhodococcus , Rhodococcus/metabolism , Bioreactors/microbiology , Hydrocarbons/metabolism , Carbon/metabolism , Air Pollutants/metabolism , Air Pollutants/analysis , Mass Spectrometry , Toluene/metabolism , Xylenes/metabolism , Butanes/metabolism , Benzene Derivatives , Pentanes
2.
J Environ Manage ; 353: 120132, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38286067

ABSTRACT

The removal of volatile organic compounds (VOCs) in air is of utmost importance to safeguard both environmental quality and human well-being. However, the low aqueous solubility of hydrophobic VOCs results in poor removal in waste gas biofilters (BFs). In this study, we evaluated the addition of (bio)surfactants in three BFs (BF1 and BF2 mixture of compost and wood chips (C + WC), and BF3 filled with expanded perlite) to enhance the removal of cyclohexane and hexane from a polluted gas stream. Experiments were carried out to select two (bio)surfactants (i.e., Tween 80 and saponin) out of five (sodium dodecyl sulfate (SDS), Tween 80, surfactin, rhamnolipid and saponin) from a physical-chemical (i.e., decreasing VOC gas-liquid partitioning) and biological (i.e., the ability of the microbial consortium to grow on the (bio)surfactants) point of view. The results show that adding Tween 80 at 1 critical micelle concentration (CMC) had a slight positive effect on the removal of both VOCs, in BF1 (e.g., 7.0 ± 0.6 g cyclohexane m-3 h-1, 85 ± 2% at 163 s; compared to 6.7 ± 0.4 g cyclohexane m-3 h-1, 76 ± 2% at 163 s and 0 CMC) and BF2 (e.g., 4.3 ± 0.4 g hexane m-3 h-1, 27 ± 2% at 82 s; compared to 3.1 ± 0.7 g hexane m-3 h-1, 16 ± 4% at 82 s and 0 CMC), but a negative effect in BF3 at either 1, 3 and 9 CMC (e.g., 2.4 ± 0.4 g hexane m-3 h-1, 30 ± 4% at 163 s and 1 CMC; compared to 4.6 ± 1.0 g hexane m-3 h-1, 43 ± 8% at 163 s and 0 CMC). In contrast, the performance of all BFs improved with the addition of saponin, particularly at 3 CMC. Notably, in BF3, the elimination capacity (EC) and removal efficiency (RE) doubled for both VOCs (i.e., 9.1 ± 0.6 g cyclohexane m-3 h-1, 49 ± 3%; 4.3 ± 0.3 g hexane m-3 h-1, 25 ± 3%) compared to no biosurfactant addition (i.e., 4.5 ± 0.4 g cyclohexane m-3 h-1, 23 ± 3%; hexane 2.2 ± 0.5 g m-3 h-1, 10 ± 2%) at 82 s. Moreover, the addition of the (bio)surfactants led to a shift in the microbial consortia, with a different response in BF1-BF2 compared to BF3. This study evaluates for the first time the use of saponin in BFs, it demonstrates that cyclohexane and hexane RE can be improved by (bio)surfactant addition, and it provides recommendations for future studies in this field.


Subject(s)
Saponins , Volatile Organic Compounds , Humans , Surface-Active Agents/chemistry , Hexanes , Polysorbates , Cyclohexanes , Filtration/methods
3.
Sci Total Environ ; 904: 167326, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37748600

ABSTRACT

The emission of volatile organic compounds (VOCs) into the atmosphere causes negative environmental and health effects. Biofiltration is known to be an efficient and cost-effective treatment technology for the removal of VOCs in waste gas streams. However, little is known on the removal of VOC mixtures and the effect of operational conditions, particularly for hydrophobic VOCs, and on the microbial populations governing the biofiltration process. In this study, we evaluated the effect of inoculum type (acclimated activated sludge (A-AS) versus Rhodococcus erythropolis) and packing material (mixture of compost and wood chips (C + WC) versus expanded perlite) on the removal of a mixture of hydrophobic VOCs (toluene, cyclohexane and hexane) in three biofilters (BFs), i.e., BF1: C + WC and R. erythropolis; BF2: C + WC and A-AS; and BF3: expanded perlite and R. erythropolis. The BFs were operated for 374 days at varying inlet loads (ILs) and empty bed residence times (EBRTs). The results showed that the VOCs were removed in the following order: toluene > cyclohexane > hexane, which corresponds to their air-water partitioning coefficient and thus bioavailability of each VOC. Toluene is the most hydrophilic VOC, while hexane is the most hydrophobic. BF2 outperformed BF1 and BF3 in each operational phase, with average maximum elimination capacities (ECmax) of 21 ± 3 g toluene m-3 h-1 (removal efficiency (RE): 100 %; EBRT: 82 s), 11 ± 2 g cyclohexane m-3 h-1 (RE: 86 ± 6 %; EBRT: 163 s) and 6.2 ± 0.9 g hexane m-3 h-1 (RE: 96 ± 4 %; EBRT: 245 s). Microbial analysis showed that despite having different inocula, the genera Rhodococcus, Mycobacterium and/or Pseudonocardia dominated in all BFs but at different relative abundances. This study provides new insights into the removal of difficult-to-degrade VOC mixtures with limited research to date on biofiltration.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Filtration/methods , Hexanes , Biodegradation, Environmental , Cyclohexanes , Toluene , Air Pollutants/analysis , Bioreactors/microbiology
4.
J Hazard Mater ; 447: 130767, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36640506

ABSTRACT

N,N-Dimethylformamide (DMF) is an organic solvent produced in large quantities worldwide. It is considered as a hazardous air pollutant and its emission should be controlled. However, only a limited number of studies have been performed on the removal of gaseous DMF by biological technologies. In this paper, we evaluate the removal of DMF under mesophilic and thermophilic conditions in a lab-scale biofilter for 472 days. The results show that, at ambient temperature, the biofilter achieved an average removal efficiency (RE) of 99.7 ± 0.3 % at Inlet Loads (ILs) up to 297 ± 52 g DFM m-3 h-1 (Empty Bed Residence Time (EBRTs) of 10.7 s). However, a decrease in EBRT (6.4 s) led to an unstable outlet concentration and, thus, to a drop in the biofilter performance (average RE: 90 ± 9 %). Moreover, an increase in temperature up to 65 °C led to a gradual decrease in RE (till 91 ± 7 %). Microbial analysis indicates that once the microorganisms encountered DMF, Rhizobiaceae dominated followed by Alcaligenaceae. Afterwards, a strong decrease in Rhizobiaceae was observed at every increase in temperature, and at 65 °C, the taxa were more heterogeneous. Overall, our experimental results indicate that biofiltration is a promising technique to remove DMF from waste gas streams.


Subject(s)
Air Pollutants , Gases , Gases/analysis , Dimethylformamide , Air Pollutants/analysis , Temperature , Filtration/methods , Biodegradation, Environmental
5.
J Hazard Mater ; 443(Pt B): 130320, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36372019

ABSTRACT

The biological removal of hydrophobic volatile organic compounds (VOCs) is limited by their low water solubility and, therefore, low bioavailability. The addition of surfactants is a promising strategy, but to gain understanding and broaden its applicability, its effect on the solubility of hydrophobic VOCs should be investigated. This study evaluates the effect of 2 synthetic surfactants (sodium dodecyl sulfate (SDS) and Tween 80) and 3 biological surfactants (surfactin, rhamnolipid and saponin) on the gas-to-liquid equilibrium partitioning coefficient (KGL) of 7 hydrophobic VOCs at different critical micelle concentrations (CMC). For all VOCs, a decrease in their KGL was observed when a (bio)surfactant was added at 1 and 3 CMC. The highest decrease in KGL (71 - 96 %) was observed for all compounds when SDS was added at 3 CMC, whereas the smallest effect was noticed when Tween 80 or surfactin (5.1 - 75 %) were added at both concentrations. The results are explained in terms of the (bio)surfactant and VOC physical-chemical properties (e.g. CMC and polarity). This is the first study evaluating the effect of biological surfactants on KGL. These fundamental data are essential to improve the design and modeling of air treatment systems using (bio)surfactants.


Subject(s)
Pulmonary Surfactants , Volatile Organic Compounds , Surface-Active Agents/chemistry , Volatile Organic Compounds/chemistry , Polysorbates , Sodium Dodecyl Sulfate/chemistry , Micelles
6.
Sci Total Environ ; 856(Pt 1): 158764, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36116639

ABSTRACT

The ozone-activated peroxymonosulfate process (O3/PMS) has received increasing attention for the removal of trace organic contaminants (e.g. pesticides and pharmaceuticals) from water bodies. However, the ozone dosing strategy has not yet been properly investigated, especially in real water matrices. Typically, one-step dosing is applied in literature. Nevertheless, optimal dosing is an important step for improving the process. This study investigates the effect of sequential ozone dosing on the PMS activation, atrazine (ATZ) removal, residual ozone concentration and radical exposure, and compares the results to those of a one-step ozone dosing approach. Experiments were performed in three water matrices with a different (in)organic content, i.e. secondary effluent, surface water and groundwater. In all matrices, the highest PMS activation was reached when applying three sequential ozone doses (3 × 5 mg O3/L). This resulted in a 3 times higher ATZ removal efficiency (up to 46 %) in secondary effluent compared to that obtained with a one-step ozone dosing (15 mg O3/L). In surface water and groundwater, similar ATZ removal (>90 %) was observed among the different ozone dosing strategies. However, the sulfate radical (SO4●-) exposure increased after each ozone addition. After three ozone additions of 5 mg/L, SO4●- contributed for 9 %, 26 % and 54 % to ATZ removal in respectively secondary effluent, surface water and groundwater. This high SO4●- contribution compared to ●OH contribution is an advantage as the selectivity of SO4●- gives rise to less radical scavenging by bulk organic matter and thus increases the (cost-)effectiveness of the O3/PMS process.


Subject(s)
Atrazine , Ozone , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Oxidation-Reduction , Atrazine/analysis , Water
7.
Food Res Int ; 162(Pt A): 111962, 2022 12.
Article in English | MEDLINE | ID: mdl-36461212

ABSTRACT

Several analytical techniques, i.e. spectroscopic techniques as Near Infrared (NIR) and Mid-Infrared (MIR), Hyper Spectral Imaging (HSI), Gas Chromatography coupled to Mass Spectrometry (GC-MS) and Proton-transfer Reaction Time-of-Flight Mass spectrometry (PTR-TOF-MS), combined with chemometrics, are examined to evaluate their potential to solve different food authenticity questions on the case of oregano. In total, 102 oregano samples from one harvest season were analyzed for origin and variety assessment, 159 samples for adulteration-assessment and 72 samples for batch-to-batch control. The Gaussian Process Latent Variable Model (GP-LVM) was applied as technique to obtain a reduced two-dimensional space. A Random Forest Regression algorithm was used as regression model for the adulteration assessment. Prediction rates of more than 89% could be achieved for origin assessment. For variety assessment, prediction rates of more than 78% could be obtained. Batch-to-batch control could be successfully performed with NIR and PTR-TOF-MS. Detection of adulteration could be successfully performed from 10% on with HSI, NIR and PTR-TOF-MS.


Subject(s)
Origanum , Gas Chromatography-Mass Spectrometry , Food , Algorithms , Chemometrics
8.
Environ Pollut ; 297: 118725, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34953949

ABSTRACT

Groundwater constitutes a major source of fresh water globally. However, it faces serious quality challenges from both conventional pollutants and contaminants of emerging concern (CECs) such as pharmaceutically active compounds (PhACs), personal care products (PCPs) and pesticides. There exists a significant knowledge gap regarding the occurrence of CECs in groundwater, especially in Africa. This study presents unique data on the concentration of fourteen PhACs, five PCPs and nine pesticides in groundwater wells in Nzoia River basin, Kenya. Generally, PCPs were the most dominant class with concentrations up to 10 µg/L (methylparaben). Anti(retro)virals, being important in the treatment of HIV/AIDS, were more prevalent among the PhACs as compared to the developed world, with concentrations up to 700 ng/L (nevirapine). In contrast, pesticides were measured at lower concentrations, the maximum being 42 ng/L (metolachlor). A basic risk assessment shows that - among the detected CECs - carbamazepine may pose medium human health risk and requires further investigation among infants and children. Point-of-use (POU) technologies are being increasingly promoted especially in the developing nations to provide drinking water solutions at the household level, but very little data is available on their performance towards CECs removal. Therefore, besides measuring CECs in groundwater, we investigated ceramic filters and solar disinfection (SODIS) as possible POU treatment options. Both techniques show potential to treat CECs in groundwater, with removal efficiencies higher than 90% obtained for 41 and 22 compounds in ceramic filters and SODIS, respectively. Moreover, for the more recalcitrant compounds (e.g. sulfadoxin), the performance is improved by up to three orders of magnitude when using TiO2 as a photocatalyst in SODIS.


Subject(s)
Groundwater , Water Pollutants, Chemical , Child , Environmental Monitoring , Humans , Kenya , Rivers , Water Pollutants, Chemical/analysis
9.
Chemosphere ; 279: 130757, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34134429

ABSTRACT

The use of biological reactors to remove volatile organic compounds (VOCs) from waste gas streams has proven to be a cost-effective and sustainable technique. However, hydrophobic VOCs exhibit low removal, mainly due to their limited bioavailability for the microorganisms. Different strategies to enhance their removal in bio(trickling)filters have been developed with promising results. In this review, two strategies, i.e. the use of surfactants and hydrophilic compounds, for enhancing the removal of hydrophobic VOCs in bio(trickling)filters are discussed. The complexity of the processes and mechanisms behind both strategies are addressed to fully understand and exploit their potential and rapid implementation at full-scale. Mass transfer and biological aspects are discussed for each strategy, and an in-depth comparison between studies carried out over the last two decades has been performed. This review identifies additional strategies to further improve the application of (bio)surfactants and/or hydrophilic VOCs, and it provides recommendations for future studies in this field.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Air Pollutants/analysis , Bioreactors , Filtration , Hydrophobic and Hydrophilic Interactions , Surface-Active Agents , Volatile Organic Compounds/analysis
10.
Sci Total Environ ; 777: 146055, 2021 Jul 10.
Article in English | MEDLINE | ID: mdl-33684757

ABSTRACT

A promising concept for sampling contaminants of emerging concern (CECs) using a home-made Simple Teabag Equilibrium Passive Sampler (STEPS) containing hydrophilic divinylbenzene (h-DVB) sorbent is presented and evaluated for application in estuarine systems. The uptake of a multi-class mixture of CECs with a broad polarity range (Log P ranging from -0.1 to 9.9) was investigated in static exposure batch experiments. Sampling rates (Rs) and equilibrium partitioning coefficients (Ksw) were determined for up to 74 CECs. Fast uptake (Rs = 0.3-12 L d-1) was noticed and the STEPS attained equilibrium partitioning after 1 to 2 weeks of exposure, with Log Ksw ranging from 4.1 to 6.5 L kg-1. Field application of this novel h-DVB containing STEPS, followed by ultra-high performance liquid chromatography coupled to high-resolution Orbitrap mass spectrometry, revealed the presence of up to 40 steroidal hormones, (alkyl)phenols, phthalates, pharmaceuticals, personal care products, and pesticides in the Belgian Part of the North Sea. The measured trace concentrations (from 0.003 ng L-1 to 1.9 µg L-1) and good precision (average RSD < 30%, n = 3) demonstrate the STEPS as fit-for-purpose for micropollutant analysis in the marine environment.

11.
Front Plant Sci ; 11: 544435, 2020.
Article in English | MEDLINE | ID: mdl-32983211

ABSTRACT

Rhizospheric microorganisms can alter plant physiology and morphology in many different ways including through the emission of volatile organic compounds (VOCs). Here we demonstrate that VOCs from beneficial root endophytic Serendipita spp. are able to improve the performance of in vitro grown Arabidopsis seedlings, with an up to 9.3-fold increase in plant biomass. Additional changes in VOC-exposed plants comprised petiole elongation, epidermal cell and leaf area expansion, extension of the lateral root system, enhanced maximum quantum efficiency of photosystem II (Fv/Fm), and accumulation of high levels of anthocyanin. Notwithstanding that the magnitude of the effects was highly dependent on the test system and cultivation medium, the volatile blends of each of the examined strains, including the references S. indica and S. williamsii, exhibited comparable plant growth-promoting activities. By combining different approaches, we provide strong evidence that not only fungal respiratory CO2 accumulating in the headspace, but also other volatile compounds contribute to the observed plant responses. Volatile profiling identified methyl benzoate as the most abundant fungal VOC, released especially by Serendipita cultures that elicit plant growth promotion. However, under our experimental conditions, application of methyl benzoate as a sole volatile did not affect plant performance, suggesting that other compounds are involved or that the mixture of VOCs, rather than single molecules, accounts for the strong plant responses. Using Arabidopsis mutant and reporter lines in some of the major plant hormone signal transduction pathways further revealed the involvement of auxin and cytokinin signaling in Serendipita VOC-induced plant growth modulation. Although we are still far from translating the current knowledge into the implementation of Serendipita VOCs as biofertilizers and phytostimulants, volatile production is a novel mechanism by which sebacinoid fungi can trigger and control biological processes in plants, which might offer opportunities to address agricultural and environmental problems in the future.

12.
Chemosphere ; 253: 126684, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32464772

ABSTRACT

The use of Fusarium solani fungi in an expanded perlite packed biofilter was investigated for the treatment of a hexane polluted waste gas stream using selected ion flow tube mass spectrometry (SIFT-MS). The latter analytical technique proved to be of utmost importance to evaluate the performance of the biofilter at high time resolution (seconds) under various transient conditions, analogous to industrial situations. The biofilter was operational for 277 days with inlet loads varying between 1 and 14 g m-3 h-1 and applying an empty bed residence time of 116 s. The results showed a positive behaviour of the biofilter against different types of disruptions such as: (i) changes in the relative humidity of the inlet gas, (ii) stopping the carbon supply for 1, 5 and 10 days, (iii) varying the inlet hexane concentration (step increases and intermittent pulses) and (iv) limiting the availability of nutrients. X-ray imaging (both conventional 2D µCT and X-ray fluorescence, XRF) was applied for the first time on biofilter media in order to get insight in the internal structure of expanded perlite and to visualise the biomass growth. The latter in combination with online porosity measurements using SIFT-MS provides fundamental information regarding the biofiltration process.


Subject(s)
Aluminum Oxide , Environmental Pollutants/isolation & purification , Filtration/methods , Fungi , Hexanes/isolation & purification , Silicon Dioxide , Air Pollutants/isolation & purification , Biodegradation, Environmental , Biomass , Fusarium/growth & development , Fusarium/metabolism , Spectrum Analysis/methods
13.
J Environ Manage ; 254: 109752, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31733478

ABSTRACT

Awareness about the rising detection and reported (eco)toxicological effects of contaminants of emerging concern (CECs, e.g. pharmaceuticals and personal care products - PPCPs - and modern pesticides) in the aquatic environment is growing. CECs are increasingly reported in the African aquatic environment, although the amount of data available is still limited. In this work, a comprehensive review is presented on the occurrence of CECs in wastewater, sludge, surface water, sediment, groundwater and drinking water of Africa. Further attention is given to the performance of wastewater stabilization ponds (WSPs) and trickling filters (TF) with respect to CECs removal. For the first time, we also look at the state of knowledge on the performance of point-of-use technologies (POUs) regarding the removal of CECs in drinking water. Generally, CECs in Africa occur at the same order of magnitude as in the Western world. However, for particular groups of compounds and at specific locations such as informal settlements, clearly higher concentrations are reported in Africa. Whereas antiretroviral and antimalarial drugs are rarely detected in the Western world, occurrence patterns in Africa reveal concentrations up to >100 µg L-1. Removal efficiencies of WSPs and TFs focus mainly on PPCPs and vary significantly, ranging from no removal (e.g. carbamazepine) to better than 99.9% (e.g. paracetamol). Despite the rising adoption of POUs, limited but promising information is available on their performance regarding CECs treatment in drinking water, particularly for the low-cost devices (e.g. ceramic filters and solar disinfection - SODIS) being adopted in Africa and other developing countries.


Subject(s)
Pesticides , Pharmaceutical Preparations , Water Pollutants, Chemical , Africa , Environmental Monitoring , Wastewater
14.
Mar Pollut Bull ; 142: 350-360, 2019 May.
Article in English | MEDLINE | ID: mdl-31232313

ABSTRACT

Knowledge about the occurrence of emerging organic micropollutants in the marine environment is still very limited, especially when focusing on the Belgian Part of the North Sea (BPNS). This study therefore optimized and validated a Speedisk® based SPE and LC-Q-Orbitrap HRMS method to tackle the challenge of measuring the expected ultra-trace concentrations in seawater. This method was applied to 18 samples collected at different locations in the open sea and harbor of the BPNS. Forty-eight compounds, among which several pharmaceuticals, personal care products or pesticides described in the EU Watchlist, were detected - some for the first time in seawater - at concentrations ranging up to 156 ng L-1. Moreover, the untargeted screening potential of the newly developed HRMS method was highlighted by revealing the presence of up to 1300 unknown components in a single sample and by assigning molecular formulae to those components demonstrating high discriminative potential between samples.


Subject(s)
Environmental Monitoring/methods , Mass Spectrometry/methods , Solid Phase Extraction/methods , Water Pollutants, Chemical/analysis , Belgium , Chromatography, High Pressure Liquid/methods , Cosmetics/analysis , North Sea , Pesticides/analysis , Pharmaceutical Preparations/analysis , Reproducibility of Results , Seawater/chemistry
15.
Environ Sci Pollut Res Int ; 26(9): 9065-9078, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30715706

ABSTRACT

An analytical method was developed for the trace quantification of oxygenated polycyclic aromatic hydrocarbons (oxyPAHs) in mussels. Compounds included were naphthalene-1-ol, 9H-fluoren-9-one, anthracene-9,10-dione, 7H-benz[de]anthracene-7-one, naphtacene-5,12-dione, and benzo[a]anthracene-7,12-dione. Pyrene-1-carboxaldehyde was applied as an internal standard. Sample extraction by pressurized liquid extraction was followed by cleanup on silica, separation by high performance liquid chromatography, and quantitative measurement by mass spectrometry with atmospheric pressure chemical ionization. The method was validated by the analysis of spiked mussel samples, resulting in trueness values of 90-124% and measurement uncertainties of 6-49%, except for naphthalene-1-ol. Quantification limits varied from 0.25 ng·g-1 to 10.7 ng·g-1. The developed analytical oxyPAH method was applied on mussel samples from groynes and quaysides along the Belgian coastline and oxyPAH data were compared to PAH concentration data. The sum of 14 US EPA priority PAHs reached maxima at the eastern side of the Belgian coastal zone, with on average 202 ng·g-1 wet weight for quayside Zeebrugge and 38.4 ng·g-1 wet weight for groyne Knokke mussels. Anthracene-9,10-dione concentrations reached maxima of 19.1 ng·g-1 wet weight at the most industrialized quayside of Zeebrugge. For other oxyPAHs, no clear relationship could be made with direct PAH emissions. Concentrations of anthracene-9,10-dione and 9H-fluoren-9-one were found to exceed corresponding parent PAH concentrations.


Subject(s)
Bivalvia/chemistry , Chromatography, High Pressure Liquid/methods , Food Contamination/analysis , Mass Spectrometry/methods , Polycyclic Aromatic Hydrocarbons/analysis , Shellfish/analysis , Animals , Belgium , Oxygen/chemistry
16.
Anal Chim Acta ; 1049: 141-151, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30612645

ABSTRACT

Plasticizers and other plastics additives have been extensively used as ingredients of plastics and are as a result thereof easily released in the aquatic environment, due to different physical diffusion processes. In this context, a dedicated method was developed for the simultaneous quantification of 27 known and a virtually unlimited number of unknown alkylphenols, Bisphenol A and phthalates in 2 aquatic matrices, i.e. sea- and freshwater. To this extent, a novel instrumental HESI-UHPLC-HRMS (heated electro-spray ionization ultra-high performance liquid chromatographic high resolution mass spectrometric) method was devised for the simultaneous analysis of 7 phenols (i.e. 6 alkylphenols and Bisphenol A) and 20 phthalates within 10 min. Thereafter, a solid-phase extraction protocol was statistically (95% confidence interval, p > 0.05) optimized based on experimental designs. The method was proven fit-for-purpose through a successful validation at environmentally relevant nanomolar concentrations. Analytical precautions were taken for minimizing false-positive results to suppress in-house contamination. The method demonstrated an excellent analytical performance across all known plasticizers and plastics additives for sea- and freshwater, revealing good linearity (R2 > 0.99, n = 39), stable recoveries (98.5-105.8%), satisfactory repeatability (RSD < 8%, n = 54) and reproducibility (RSD < 10%, n = 36). Subsequently, a novel analytical strategy was devised for the tentative identification of unknown plasticizers and plastics additives using specific in-house determined fragments incorporated in a Python code. The applicability of the analytical platform was demonstrated by measuring 24 seawater samples. Interestingly, 16 out of 27 known plasticizers, plastics additives and primary metabolites could be quantified while the untargeted analysis uncovered 1042 compounds, whereof 5% (n = 46) could be assigned a plasticizer-plastics additive chemical identity, providing evidence for the severe plastic contamination status of our marine environment.

17.
J Hazard Mater ; 360: 204-213, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30099363

ABSTRACT

Given the need for innovations in advanced oxidation processes to deal with challenges such as OH scavenging, this paper addresses the removal of pharmaceuticals with a large variety in ozone reactivity (kO3 = 0.15-3 × 105 M-1s-1) by use of the novel ozone-activated peroxymonosulfate (O3/PMS) process. A clear improvement in removal efficiency (up to 5 times higher) is noticed as a result of the generation of SO4- radicals, mainly for slow-ozone reacting compounds (kO3 ≤ 250 M-1s-1) and in the presence of a OH scavenger. Depending on the target compound, SO4- are assessed to contribute for 50-90% to the overall removal of the micropollutants, both in single-compound and mixture experiments. Ozone-based PMS activation occurs at neutral to alkaline pH and, in the presence of a OH scavenger, removal efficiencies during O3/PMS are up to 3 times higher than with the O3/H2O2 process. In optimizing the O3/PMS process, a trade-off has to made between the desired removal and the PMS:O3 ratio. A molar ratio of 1:10 already results in a clear benefit compared to the ozonation process. Further increase of the PMS content up to a 1:1 ratio improved the removal by an additional factor of 1.3-1.5.


Subject(s)
Peroxides/chemistry , Pharmaceutical Preparations/chemistry , Water Pollutants, Chemical/chemistry , Atrazine/chemistry , Chlorobenzoates/chemistry , Oxidation-Reduction , Ozone/chemistry , Water Purification/methods
18.
Sci Total Environ ; 637-638: 336-348, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29751313

ABSTRACT

Although there is increased global environmental concern about emerging organic micropollutants (EOMPs) such as pharmaceuticals, personal care products (PPCPs) and polar pesticides, limited information is available on their occurrence in Africa. This study presents unique data on concentrations and loads of 31 PPCPs and 10 pesticides in four wastewater stabilization ponds (WSPs) and receiving rivers (flowing through urban centres) in Kenya. The WSPs indicate a high potential to remove pharmaceutically active compounds (PhACs) with removals by up to >4 orders of magnitude (>99.99% removal), mainly occurring at the facultative stage. However, there are large differences in removal among the different classes, and a shift in the relative PhACs occurrence is observed during wastewater treatment. Whereas the influent is dominated by high-consumption PhACs like anti-inflammatory drugs (e.g. paracetamol and ibuprofen, up to 1000 µg L-1), the most recalcitrant PhACs including mainly antibiotics (e.g. sulfadoxin and sulfamethoxazole) and antiretrovirals (e.g. lamivudine and nevirapine) are largely abundant (up to 100 µg L-1) in treated effluent. Overall, concentrations of EOMPs in the Nzoia Basin rivers are the highest in dry season (except pesticides) and in small tributaries. They are of the same order of magnitude as those measured in the western world, but clearly lower than what we recently measured in the Ngong River, Nairobi region. Based on the specific consumption patterns and recalcitrant behavior, high concentrations (>1000 ng L-1) are observed in the rivers for PPCPs like lamivudine, zidovudine, sulfamethoxazole and methylparaben. Concentration levels of pesticides are in general one order of magnitude lower (<250 ng L-1). Our data suggest a continuous input of EOMPs to the rivers from both point (WSPs) and diffuse (urban centres) sources. To better understand and manage the impact of both sources, EOMP removal mechanisms in WSPs and their attenuation in rivers merit further research.


Subject(s)
Cosmetics/analysis , Environmental Monitoring , Pesticides/analysis , Pharmaceutical Preparations/analysis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Kenya , Ponds , Rivers , Wastewater/chemistry , Wastewater/statistics & numerical data
19.
Anal Bioanal Chem ; 410(18): 4527-4539, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29796899

ABSTRACT

Phytohormones are signaling and regulating metabolites involved in numerous plant processes, including growth, development, and responses to stress. Currently, the focus is on the analysis of multiple phytohormones in order to characterize crosstalk and hormone signaling networks. In this paper, representative phytohormones of the major classes are simultaneously determined in rice tissues by a generic solid-liquid extraction, followed by liquid chromatography and electrospray ionization high-resolution tandem mass spectrometry using a Q-Exactive™ instrument. After a thorough optimization of the sample preparation, the analytical method was fully validated toward the ultra-trace quantification of six a priori selected plant hormones using three scan modes of the quadrupole-Orbitrap instrument: full-scan high-resolution mass spectrometry, targeted single ion monitoring (t-SIM), and t-SIM followed by data-dependent tandem mass spectrometry. Overall, a similar quantitative performance was noticed for the different scan modes. The analytical method was successfully applied to measure basal phytohormone levels in six different rice accessions, comprising Oryza sativa ssp. japonica, indica, and Oryza glaberrima. Hormone concentrations were higher in shoots than in roots or at least similar. Except for a lower level of salicylic acid in shoots of O. glaberrima versus O. sativa, no other differences in hormone levels could be noticed that were dependent of the (sub)species assignment of the analyzed accessions. Making use of the benefits of full-scan high-resolution mass spectrometry, a first post-run suspect screening was performed, suggesting - based on accurate mass measurements and isotopic patterns - the possible presence of about 50 additional plant hormones in the rice tissues. Graphical abstract ᅟ.


Subject(s)
Oryza/chemistry , Plant Growth Regulators/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Limit of Detection , Oryza/classification , Plant Growth Regulators/isolation & purification , Plant Roots/metabolism , Plant Shoots/metabolism , Solid Phase Extraction/methods , Species Specificity
20.
Chemosphere ; 196: 494-501, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29324389

ABSTRACT

New robust correlation models for ozonation, based on UVA254 and fluorescence surrogate parameters and developed considering kinetic information, have been applied at pilot-scale. This model framework is validated with the aim for operators to control the ozone dose for the removal of trace organic contaminants (TrOCs) in effluents from full-scale municipal wastewater treatment plants. The inflected correlation model between ΔTrOCs and the surrogates predicts the removal of TrOCs (based on statistical evidence) solely using the 2nd order reaction rate constant with ozone (kO3) and in a more adequate manner than similar single correlation models. This allows the use of this new model for current and future TrOCs under investigation which is highly interesting when imposed discharge limits might include more and other TrOCs in future. The use of UVA254 might be preferable at the current timing for online monitoring of TrOC abatement as the model showed a good predictive power (based on statistical evidence and visual confirmation). Reliable online sensors are more widespread (and commercially) available compared to fluorescence sensors which are still under development, with the exception of a few examples. Nevertheless, the data processing of the fluorescence signals, isolating the different intensities associated with moieties reacting similarly to ozone might even increase the predictive power, given the lower degree of interference (i.e. less scattering).


Subject(s)
Ozone/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Kinetics , Pilot Projects , Wastewater/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...