Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 155: 161-6, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24594169

ABSTRACT

The reactivity of iron contained within insoluble colloidal metal-pyrophosphate salts was determined and compared to the reactivity of a soluble iron salt (FeCl3). As a model system for the reactivity of iron in food products, the formation of an iron-polyphenol complex was followed with spectrophotometry. Three types of systems were prepared and their colloidal stability and reactivity studied: Fe(3+) pyrophosphate, protein-coated Fe(3+) pyrophosphate and mixed-metal pyrophosphates containing Fe(3+) and a second cation M. The additional cation used was either monovalent (sodium) or divalent (M(2+)). It was found that: (i) incorporating iron in a colloidal salt reduced its reactivity compared to free Fe(3+) ions; (ii) coating the particles with a layer of hydrophobic protein (zein) increased stability and further decreased the reactivity. Finally, the most surprising result was that (iii) a mixed system containing more Fe(3+) than M actually increased the reactivity of the contained iron, while the reverse, a system containing excess M, inhibited the reactivity completely.


Subject(s)
Colloids/chemistry , Ferric Compounds/chemistry
2.
Nanotechnology ; 20(9): 095708, 2009 Mar 04.
Article in English | MEDLINE | ID: mdl-19417504

ABSTRACT

In this work we compare the standard imaging of various types of nanoparticles deposited on surfaces by atomic force microscopy (AFM) with a complementary analysis of the same samples by either electrostatic force microscopy (EFM) or magnetic force microscopy (MFM). Experiments were carried out on gold nanoparticles (decahedrons and stars) and two different iron oxide systems: goethite (alpha-FeOOH) and hematite (alpha-Fe(2)O(3)). Regardless of the particular geometry, the EFM signal appears to be stronger on edges or tips of pure gold nanoparticles. Both EFM and MFM experiments were also carried out on iron oxide particles. Apart from the structural analysis, we analyzed the influence of a shell layer deposited on the gold and iron oxide particles, the shell being amorphous SiO(2). Although the silica layer was found to have an insulating effect around the particles, in all cases EFM/MFM measurements could still be performed by the proper choice of the scan lift height (with an eventual slight increase of the sample bias, where applicable).


Subject(s)
Crystallization/methods , Microscopy, Atomic Force/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...