Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Med ; 3(11): 100802, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36334593

ABSTRACT

Neoadjuvant chemoradiotherapy (nCRT) improves outcomes in resectable esophageal adenocarcinoma (EAC), but acquired resistance precludes long-term efficacy. Here, we delineate these resistance mechanisms. RNA sequencing on matched patient samples obtained pre-and post-neoadjuvant treatment reveal that oxidative phosphorylation was the most upregulated of all biological programs following nCRT. Analysis of patient-derived models confirms that mitochondrial content and oxygen consumption strongly increase in response to nCRT and that ionizing radiation is the causative agent. Bioinformatics identifies estrogen-related receptor alpha (ESRRA) as the transcription factor responsible for reprogramming, and overexpression and silencing of ESRRA functionally confirm that its downstream metabolic rewiring contributes to resistance. Pharmacological inhibition of ESRRA successfully sensitizes EAC organoids and patient-derived xenografts to radiation. In conclusion, we report a profound metabolic rewiring following chemoradiation and demonstrate that its inhibition resensitizes EAC cells to radiation. These findings hold broader relevance for other cancer types treated with radiation as well.


Subject(s)
Drug Resistance, Neoplasm , Esophageal Neoplasms , Neoadjuvant Therapy , Organelle Biogenesis , Receptors, Estrogen , Humans , Esophageal Neoplasms/therapy , Mitochondria , Receptors, Estrogen/metabolism , Animals , ERRalpha Estrogen-Related Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...