Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 25(6): 104451, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35707723

ABSTRACT

High secretion of the metabolites citrate and spermine is a unique hallmark for normal prostate epithelial cells, and is reduced in aggressive prostate cancer. However, the identity of the genes controlling this biological process is mostly unknown. In this study, we have created a gene signature of 150 genes connected to citrate and spermine secretion in the prostate. We have computationally integrated metabolic measurements with multiple transcriptomics datasets from the public domain, including 3826 tissue samples from prostate and prostate cancer. The accuracy of the signature is validated by its unique enrichment in prostate samples and prostate epithelial tissue compartments. The signature highlights genes AZGP1, ANPEP and metallothioneins with zinc-binding properties not previously studied in the prostate, and the expression of these genes are reduced in more aggressive cancer lesions. However, the absence of signature enrichment in common prostate model systems can make it challenging to study these genes mechanistically.

2.
BMC Res Notes ; 14(1): 162, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33931103

ABSTRACT

OBJECTIVE: Properties of gene products can be described or annotated with Gene Ontology (GO) terms. But for many genes we have limited information about their products, for example with respect to function. This is particularly true for long non-coding RNAs (lncRNAs), where the function in most cases is unknown. However, it has been shown that annotation as described by GO terms to some extent can be predicted by enrichment analysis on properties of co-expressed genes. RESULTS: GAPGOM integrates two relevant algorithms, lncRNA2GOA and TopoICSim, into a user-friendly R package. Here lncRNA2GOA does annotation prediction by co-expression, whereas TopoICSim estimates similarity between GO graphs, which can be used for benchmarking of prediction performance, but also for comparison of GO graphs in general. The package provides an improved implementation of the original tools, with substantial improvements in performance and documentation, unified interfaces, and additional features.


Subject(s)
Benchmarking , Computational Biology , Algorithms , Gene Ontology , Molecular Sequence Annotation
SELECTION OF CITATIONS
SEARCH DETAIL
...