Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(8): e2207847, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36458737

ABSTRACT

Bioelectronics hold the key for understanding and treating disease. However, achieving stable, long-term interfaces between electronics and the body remains a challenge. Implantation of a bioelectronic device typically initiates a foreign body response, which can limit long-term recording and stimulation efficacy. Techniques from regenerative medicine have shown a high propensity for promoting integration of implants with surrounding tissue, but these implants lack the capabilities for the sophisticated recording and actuation afforded by electronics. Combining these two fields can achieve the best of both worlds. Here, the construction of a hybrid implant system for creating long-term interfaces with tissue is shown. Implants are created by combining a microelectrode array with a bioresorbable and remodellable gel. These implants are shown to produce a minimal foreign body response when placed into musculature, allowing one to record long-term electromyographic signals with high spatial resolution. This device platform drives the possibility for a new generation of implantable electronics for long-term interfacing.


Subject(s)
Electronics , Foreign Bodies , Humans , Prostheses and Implants , Microelectrodes , Regenerative Medicine
2.
Sci Adv ; 8(37): eabo4761, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36112689

ABSTRACT

3D cell models have made strides in the past decades in response to failures of 2D cultures to translate targets during the drug discovery process. Here, we report on a novel multiwell plate bioelectronic platform, namely, the e-transmembrane, capable of supporting and monitoring complex 3D cell architectures. Scaffolds made of PEDOT:PSS [poly(3,4-ethylenedioxythiophene):polystyrene sulfonate] are microengineered to function as separating membranes for compartmentalized cell cultures, as well as electronic components for real-time in situ recordings of cell growth and function. Owing to the high surface area-to-volume ratio, the e-transmembrane allows generation of deep, stratified tissues within the porous bulk and cell polarization at the apico-basal domains. Impedance spectroscopy measurements carried out throughout the tissue growth identified signatures from different cellular systems and allowed extraction of critical functional parameters. This platform has the potential to become a universal tool for biologists for the next generation of high-throughput drug screening assays.

3.
Chem Rev ; 122(4): 4700-4790, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34910876

ABSTRACT

Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.


Subject(s)
Electronics , Polymers , Animals , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...