Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 115(16): 4140-4145, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29610327

ABSTRACT

Mutations of the KRAS gene are found in human cancers with high frequency and result in the constitutive activation of its protein products. This leads to aberrant regulation of downstream pathways, promoting cell survival, proliferation, and tumorigenesis that drive cancer progression and negatively affect treatment outcomes. Here, we describe a workflow that can detect and quantify mutation-specific consequences of KRAS biochemistry, namely linked changes in posttranslational modifications (PTMs). We combined immunoaffinity enrichment with detection by top-down mass spectrometry to discover and quantify proteoforms with or without the Gly13Asp mutation (G13D) specifically in the KRAS4b isoform. The workflow was applied first to isogenic KRAS colorectal cancer (CRC) cell lines and then to patient CRC tumors with matching KRAS genotypes. In two cellular models, a direct link between the knockout of the mutant G13D allele and the complete nitrosylation of cysteine 118 of the remaining WT KRAS4b was observed. Analysis of tumor samples quantified the percentage of mutant KRAS4b actually present in cancer tissue and identified major differences in the levels of C-terminal carboxymethylation, a modification critical for membrane association. These data from CRC cells and human tumors suggest mechanisms of posttranslational regulation that are highly context-dependent and which lead to preferential production of specific KRAS4b proteoforms.


Subject(s)
Colorectal Neoplasms/enzymology , Mutation, Missense , Neoplasm Proteins/analysis , Point Mutation , Protein Processing, Post-Translational , Proto-Oncogene Proteins p21(ras)/analysis , Amino Acid Sequence , Cell Line, Tumor , Cell Membrane/metabolism , Chromatography, Liquid , Colorectal Neoplasms/genetics , Cysteine/chemistry , Humans , Methylation , Models, Molecular , Neoplasm Proteins/chemistry , Neoplasm Proteins/isolation & purification , Nitrosation , Prenylation , Protein Conformation , Proteomics/methods , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/isolation & purification , Recombinant Proteins/chemistry , Sequence Alignment , Sequence Homology, Amino Acid , Tandem Mass Spectrometry
2.
Anal Chem ; 90(6): 3802-3810, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29481055

ABSTRACT

Over the past decade, advances in mass spectrometry-based proteomics have accelerated brain proteome research aimed at studying the expression, dynamic modification, interaction and function of proteins in the nervous system that are associated with physiological and behavioral processes. With the latest hardware and software improvements in top-down mass spectrometry, the technology has expanded from mere protein profiling to high-throughput identification and quantification of intact proteoforms. Murine systems are broadly used as models to study human diseases. Neuroscientists specifically study the mouse brain from inbred strains to help understand how strain-specific genotype and phenotype affect development, functioning, and disease progression. This work describes the first application of label-free quantitative top-down proteomics to the analysis of the mouse brain proteome. Operating in discovery mode, we determined physiochemical differences in brain tissue from four healthy inbred strains, C57BL/6J, DBA/2J, FVB/NJ, and BALB/cByJ, after probing their intact proteome in the 3.5-30 kDa mass range. We also disseminate these findings using a new tool for top-down proteomics, TDViewer and cataloged them in a newly established Mouse Brain Proteoform Atlas. The analysis of brain tissues from the four strains identified 131 gene products leading to the full characterization of 343 of the 593 proteoforms identified. Within the results, singly and doubly phosphorylated ARPP-21 proteoforms, known to inhibit calmodulin, were differentially expressed across the four strains. Gene ontology (GO) analysis for detected differentially expressed proteoforms also helps to illuminate the similarities and dissimilarities in phenotypes among these inbred strains.


Subject(s)
Brain Chemistry , Mass Spectrometry/methods , Mice, Inbred Strains , Proteome/analysis , Proteomics/methods , Animals , Brain/metabolism , Chromatography, Liquid/methods , Female , Mice, Inbred BALB C/metabolism , Mice, Inbred C57BL/metabolism , Mice, Inbred DBA/metabolism , Mice, Inbred Strains/metabolism , Proteome/metabolism , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...