Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
Nat Microbiol ; 9(2): 490-501, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38212658

ABSTRACT

Community assembly describes how different ecological processes shape microbial community composition and structure. How environmental factors impact community assembly remains elusive. Here we sampled microbial communities and >200 biogeochemical variables in groundwater at the Oak Ridge Field Research Center, a former nuclear waste disposal site, and developed a theoretical framework to conceptualize the relationships between community assembly processes and environmental stresses. We found that stochastic assembly processes were critical (>60% on average) in shaping community structure, but their relative importance decreased as stress increased. Dispersal limitation and 'drift' related to random birth and death had negative correlations with stresses, whereas the selection processes leading to dissimilar communities increased with stresses, primarily related to pH, cobalt and molybdenum. Assembly mechanisms also varied greatly among different phylogenetic groups. Our findings highlight the importance of microbial dispersal limitation and environmental heterogeneity in ecosystem restoration and management.


Subject(s)
Groundwater , Microbiota , Phylogeny , Stochastic Processes
2.
mSystems ; 8(6): e0102523, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38038441

ABSTRACT

IMPORTANCE: Amplicon sequencing of targeted genes is the predominant approach to estimate the membership and structure of microbial communities. However, accurate reconstruction of community composition is difficult due to sequencing errors, and other methodological biases and effective approaches to overcome these challenges are essential. Using a mock community of 33 phylogenetically diverse strains, this study evaluated the effect of GC content on sequencing results and tested different approaches to improve overall sequencing accuracy while characterizing the pros and cons of popular amplicon sequence data processing approaches. The sequencing results from this study can serve as a benchmarking data set for future algorithmic improvements. Furthermore, the new insights on sequencing error, chimera formation, and GC bias from this study will help enhance the quality of amplicon sequencing studies and support the development of new data analysis approaches.


Subject(s)
DNA Barcoding, Taxonomic , Microbiota , Base Composition , Sequence Analysis, DNA/methods , Bias
3.
Environ Microbiol ; 24(11): 5546-5560, 2022 11.
Article in English | MEDLINE | ID: mdl-36053980

ABSTRACT

Bacillus cereus strain CPT56D-587-MTF (CPTF) was isolated from the highly contaminated Oak Ridge Reservation (ORR) subsurface. This site is contaminated with high levels of nitric acid and multiple heavy metals. Amplicon sequencing of the 16S rRNA genes (V4 region) in sediment from this area revealed an amplicon sequence variant (ASV) with 100% identity to the CPTF 16S rRNA sequence. Notably, this CPTF-matching ASV had the highest relative abundance in this community survey, with a median relative abundance of 3.77% and comprised 20%-40% of reads in some samples. Pangenomic analysis revealed that strain CPTF has expanded genomic content compared to other B. cereus species-largely due to plasmid acquisition and expansion of transposable elements. This suggests that these features are important for rapid adaptation to native environmental stressors. We connected genotype to phenotype in the context of the unique geochemistry of the site. These analyses revealed that certain genes (e.g. nitrate reductase, heavy metal efflux pumps) that allow this strain to successfully occupy the geochemically heterogenous microniches of its native site are characteristic of the B. cereus species while others such as acid tolerance are mobile genetic element associated and are generally unique to strain CPTF.


Subject(s)
Bacillus cereus , Metals, Heavy , RNA, Ribosomal, 16S/genetics , Bacillus cereus/genetics , Genomics , Phylogeny
4.
Microorganisms ; 10(1)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35056589

ABSTRACT

Short rotation coppice (SRC) is increasingly being adopted for bioenergy production, pollution remediation and land restoration. However, its long-term effects on soil microbial communities are poorly characterized. Here, we studied soil microbial functional genes and their biogeographic pattern under SRC with willow trees as compared to those under permanent grassland (C). GeoChip analysis showed a lower functional gene diversity in SRC than in C soil, whereas microbial ATP and respiration did not change. The SRC soil had lower relative abundances of microbial genes encoding for metal(-oid) resistance, antibiotic resistance and stress-related proteins. This indicates a more benign habitat under SRC for microbial communities after relieving heavy metal stress, consistent with the lower phytoavailability of some metals (i.e., As, Cd, Ni and Zn) and higher total organic carbon, NO3--N and P concentrations. The microbial taxa-area relationship was valid in both soils, but the space turnover rate was higher under SRC within 0.125 m2, which was possibly linked to a more benign environment under SRC, whereas similar values were reached beyond thisarea. Overall, we concluded that SRC management can be considered as a phytotechnology that ameliorates the habitat for soil microorganisms, owing to TOC and nutrient enrichment on the long-term.

5.
Ground Water ; 60(1): 99-111, 2022 01.
Article in English | MEDLINE | ID: mdl-34490626

ABSTRACT

Microbial-mediated nitrate removal from groundwater is widely recognized as the predominant mechanism for nitrate attenuation in contaminated aquifers and is largely dependent on the presence of a carbon-bearing electron donor. The repeated exposure of a natural microbial community to an electron donor can result in the sustained ability of the community to remove nitrate; this phenomenon has been clearly demonstrated at the laboratory scale. However, in situ demonstrations of this ability are lacking. For this study, ethanol (electron donor) was repeatedly injected into a groundwater well (treatment) for six consecutive weeks to establish the sustained ability of a microbial community to remove nitrate. A second well (control) located upgradient was not injected with ethanol during this time. The treatment well demonstrated strong evidence of sustained ability as evident by ethanol, nitrate, and subsequent sulfate removal up to 21, 64, and 68%, respectively, as compared to the conservative tracer (bromide) upon consecutive exposures. Both wells were then monitored for six additional weeks under natural (no injection) conditions. During the final week, ethanol was injected into both treatment and control wells. The treatment well demonstrated sustained ability as evident by ethanol and nitrate removal up to 20 and 21%, respectively, as compared to bromide, whereas the control did not show strong evidence of nitrate removal (5% removal). Surprisingly, the treatment well did not indicate a sustained and selective enrichment of a microbial community. These results suggested that the predominant mechanism(s) of sustained ability likely exist at the enzymatic- and/or genetic-levels. The results of this study demonstrated the in situ ability of a microbial community to remove nitrate can be sustained in the prolonged absence of an electron donor.


Subject(s)
Groundwater , Microbiota , Water Pollutants, Chemical , Nitrates/analysis , Sulfates , Water Pollutants, Chemical/analysis , Water Wells
6.
Front Microbiol ; 12: 735022, 2021.
Article in English | MEDLINE | ID: mdl-34594317

ABSTRACT

Soil organic matter is composed of a variety of carbon (C) forms. However, not all forms are equally accessible to soil microorganisms. Deprivation of C inputs will cause changes in the physical and microbial community structures of soils; yet the trajectories of such changes are not clear. We assessed microbial communities using phospholipid fatty acid profiling, metabarcoding, CO2 emissions, and functional gene microarrays in a decade-long C deprivation field experiment. We also assessed changes in a range of soil physicochemical properties, including using X-ray Computed Tomography imaging to assess differences in soil structure. Two sets of soils were deprived of C inputs by removing plant inputs for 10 years and 1 year, respectively. We found a reduction in diversity measures, after 10 years of C deprivation, which was unexpected based on previous research. Fungi appeared to be most impacted, likely due to competition for scarce resources after exhausting the available plant material. This suggestion was supported by evidence of bioindicator taxa in non-vegetated soils that may directly compete with or consume fungi. There was also a reduction in copies of most functional genes after 10 years of C deprivation, though gene copies increased for phytase and some genes involved in decomposing recalcitrant C and methanogenesis. Additionally, soils under C deprivation displayed expected reductions in pH, organic C, nitrogen, and biomass as well as reduced mean pore size, especially in larger pores. However, pore connectivity increased after 10 years of C deprivation contrary to expectations. Our results highlight concurrent collapse of soil structure and biodiversity following long-term C deprivation. Overall, this study shows the negative trajectory of continuous C deprivation and loss of organic matter on a wide range of soil quality indicators and microorganisms.

7.
Open Forum Infect Dis ; 8(6): ofab271, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34189178

ABSTRACT

BACKGROUND: Travelers' diarrhea (TD) is common among military personnel deployed to tropical and subtropical regions. It remains unclear how TD and subsequent antibiotic treatment impact the resident microflora within the gut, especially given increased prevalence of antibiotic resistance among enteric pathogens and acquisition of multidrug-resistant organisms. We examined functional properties of the fecal microflora in response to TD, along with subsequent antibiotic treatment. METHODS: Fecal samples from US and UK military service members deployed to Djibouti, Kenya, and Honduras who presented with acute watery diarrhea were collected. A sample was collected at acute presentation to the clinic (day 0, before antibiotics), as well as 7 and/or 21 days following a single dose of antibiotics (azithromycin [500 mg], levofloxacin [500 mg], or rifaximin [1650 mg], all with loperamide). Each stool sample underwent culture and TaqMan reverse transcription polymerase chain reaction analyses for pathogen and antibiotic resistance gene detection. Purified DNA from each sample was analyzed using the HumiChip3.1 functional gene array. RESULTS: In total, 108 day 1 samples, 50 day 7 samples, and 94 day 21 samples were available for analysis from 119 subjects. Geographic location and disease severity were associated with distinct functional compositions of fecal samples. There were no overt functional differences between pre- and postantibiotic treatment samples, nor was there increased acquisition of antibiotic resistance determinants for any of the antibiotic regimens. CONCLUSIONS: These results indicate that single-dose antibiotic regimens may not drastically alter the functional or antibiotic resistance composition of fecal microflora, which should inform clinical practice guidelines and antimicrobial stewardship. CLINICAL TRIALS REGISTRATION NUMBER: NCT01618591.

8.
mSphere ; 6(3): e0116020, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34077260

ABSTRACT

During the last several decades, viruses have been increasingly recognized for their abundance, ubiquity, and important roles in different ecosystems. Despite known contributions to aquatic systems, few studies examine viral abundance and community structure over time in terrestrial ecosystems. The effects of land conversion and land management on soil microbes have been previously investigated, but their effects on virus population are not well studied. This study examined annual dynamics of viral abundance in soils from a native tallgrass prairie and two croplands, conventional till winter wheat and no-till canola, in Oklahoma. Virus-like particle (VLP) abundance varied across sites, and showed clear seasonal shifts. VLP abundance significantly correlated with environmental variables that were generally reflective of land use, including air temperature, soil nitrogen, and plant canopy coverage. Structural equation modeling supported the effects of land use on soil communities by emphasizing interactions between management, environmental factors, and viral and bacterial abundance. Between the viral metagenomes from the prairie and tilled wheat field, 1,231 unique viral operational taxonomic units (vOTUs) were identified, and only five were shared that were rare in the contrasting field. Only 13% of the vOTUs had similarity to previously identified viruses in the RefSeq database, with only 7% having known taxonomic classification. Together, our findings indicated land use and tillage practices influence virus abundance and community structure. Analyses of viromes over time and space are vital to viral ecology in providing insight on viral communities and key information on interactions between viruses, their microbial hosts, and the environment. IMPORTANCE Conversion of land alters the physiochemical and biological environments by not only changing the aboveground community, but also modifying the soil environment for viruses and microbes. Soil microbial communities are critical to nutrient cycling, carbon mineralization, and soil quality; and viruses are known for influencing microbial abundance, community structure, and evolution. Therefore, viruses are considered an important part of soil functions in terrestrial ecosystems. In aquatic environments, virus abundance generally exceeds bacterial counts by an order of magnitude, and they are thought to be one of the greatest genetic reservoirs on the planet. However, data are extremely limited on viruses in soils, and even less is known about their responses to the disturbances associated with land use and management. The study provides important insights into the temporal dynamics of viral abundance and the structure of viral communities in response to the common practice of turning native habitats into arable soils.


Subject(s)
Crops, Agricultural/virology , Grassland , Metagenome , Soil Microbiology , Virome/genetics , Viruses/genetics , Metagenomics , Spatio-Temporal Analysis
9.
mBio ; 12(1)2021 02 23.
Article in English | MEDLINE | ID: mdl-33622729

ABSTRACT

Soil microorganisms are sensitive to temperature in cold ecosystems, but it remains unclear how microbial responses are modulated by other important climate drivers, such as precipitation changes. Here, we examine the effects of six in situ warming and/or precipitation treatments in alpine grasslands on microbial communities, plants, and soil carbon fluxes. These treatments differentially affected soil carbon fluxes, gross primary production, and microbial communities. Variations of soil CO2 and CH4 fluxes across all sites significantly (r > 0.70, P < 0.050) correlated with relevant microbial functional abundances but not bacterial or fungal abundances. Given tight linkages between microbial functional traits and ecosystem functionality, we conclude that future soil carbon fluxes in alpine grasslands can be predicted by microbial carbon-degrading capacities.IMPORTANCE The warming pace in the Tibetan Plateau, which is predominantly occupied by grassland ecosystems, has been 0.2°C per decade in recent years, dwarfing the rate of global warming by a factor of 2. Many Earth system models project substantial carbon sequestration in Tibet, which has been observed. Here, we analyzed microbial communities under projected climate changes by 2100. As the soil "carbon pump," the growth and activity of microorganisms can largely influence soil carbon dynamics. However, microbial gene response to future climate scenarios is still obscure. We showed that the abundances of microbial functional genes, but not microbial taxonomy, were correlated with carbon fluxes and ecosystem multifunctionality. By identifying microbial traits linking to ecosystem functioning, our results can guide the assessment of future soil carbon fluxes in alpine grasslands, a critical step toward mitigating climate changes.


Subject(s)
Carbon Cycle , Carbon/metabolism , Climate Change , Microbiota , Soil Microbiology , Soil/chemistry , Bacteria/genetics , Bacteria/metabolism , Ecosystem , Fungi/genetics , Fungi/physiology , Microbiota/genetics , Microbiota/physiology , Temperature , Tibet
10.
Sci Total Environ ; 774: 145737, 2021 Jun 20.
Article in English | MEDLINE | ID: mdl-33611012

ABSTRACT

Unraveling the succession of microbial communities is a core ecological research topic. Yet few studies have focused on how long-term secondary succession affects the functional profiles and ecological processes of abundant and rare microbial subcommunities. Here, we used amplicon sequencing and GeoChip analysis to explore the ecological functions of abundant and rare biospheres and their correlation with soil multinutrient cycling. Samples for this study were collected from a well-established secondary succession chronosequence that spans >30 years of dryland ecosystem development on the Loess Plateau of China. Although both abundant and rare subcommunities shifted with succession, the changing of beta-diversity of the microbial communities was primarily driven by species replacement of the rare biosphere. Phylogenetic changes of abundant and rare taxa were associated with their functional traits, which dominated the diversity-related selection along all succession ages. Neutral theory analysis indicated that the assemblage of abundant taxa over all successional ages was regulated by dispersal homogenizing and ecological drift. The null model revealed that homogeneous and variable selection were the dominant assembly processes for rare subcommunities compared with abundant species. pH and nitrogen content were the paramount drivers determining the assembly of microbial communities and functional genes, consistent with the importance of environmental filtering. Furthermore, the rare biosphere had a paramount role in the entire ecological network and was the major driver for most soil processes such as C, N, and S cycling. Nonetheless, a significant portion of soil P cycling was regulated by abundant taxa. Collectively, our study provides insight into the mechanisms underlying microbial community assembly and soil microbe-driven functional changes in biogeochemical processes during secondary succession.


Subject(s)
Soil Microbiology , Soil , Bacteria , China , Phylogeny
11.
Environ Pollut ; 273: 116487, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33482461

ABSTRACT

Discerning the differences in activated sludge (AS) microbial community due to geographic location and environmental and operational factors is of great significance for precise design and maintenance of wastewater treatment plants (WWTPs). Hence, in this study, 150 AS samples collected from WWTPs in South China and North China were analyzed by 16 S rRNA gene sequencing. In general, AS microbial community in North China had lower diversity, higher proportions of stochastic assembly (35.7% v.s. 15.8%) and more network keystone species (19 v.s. 5) compared with southern AS community. Conductivity and SRT had significant effects on AS community in both regions. Latitude, annual mean temperature, and influent BOD, COD, and ammonia influenced South China community significantly, while pH and influent total phosphorus affected North China community. To achieve stable performance, southern WWTPs should carefully monitor fluctuations in wastewater characteristics, while northern WWTPs should monitor AS communities for shifts in the dominant taxa from immigrant strains brought in through the influent. Additionally, WWTPs in North China should be aware of the need to proactively control sludge bulking because of the high abundance and occurrence of Haliscomenobacter in these AS communities. MAIN FINDING: The call for regional design based on the regional discrepancy of microbial communities in activated sludge is uncovered and according suggestions were given.

12.
Environ Microbiol ; 23(2): 1199-1209, 2021 02.
Article in English | MEDLINE | ID: mdl-33283951

ABSTRACT

Soil aggregates, with complex spatial and nutritional heterogeneity, are clearly important for regulating microbial community ecology and biogeochemistry in soils. However, how the taxonomic composition and functional attributes of N-cycling-microbes within different soil particle-size fractions under a long-term fertilization treatment remains largely unknown. Here, we examined the composition and metabolic potential for urease activity, nitrification, N2 O production and reduction of the microbial communities attached to different sized soil particles (2000-250, 250-53 and <53 µm) using a functional gene microarray (GeoChip) and functional assays. We found that urease activity and nitrification were higher in <53 µm fractions, whereas N2 O production and reduction rates were greater in 2000-250 and 250-53 µm across different fertilizer regimes. The abundance of key N-cycling genes involved in anammox, ammonification, assimilatory and dissimilatory N reduction, denitrification, nitrification and N2 -fixation detected by GeoChip increased as soil aggregate size decreased; and the particular key genes abundance (e.g., ureC, amoA, narG, nirS/K) and their corresponding activity were uncoupled. Aggregate fraction exerted significant impacts on N-cycling microbial taxonomic composition, which was significantly shaped by soil nutrition. Taken together, these findings indicate the important roles of soil aggregates in differentiating N-cycling metabolic potential and taxonomic composition, and provide empirical evidence that nitrogen metabolism potential and community are uncoupled due to aggregate heterogeneity.


Subject(s)
Microbiota/physiology , Nitrogen Cycle , Nitrogen/metabolism , Soil Microbiology , Fertilizers/analysis , Genes, Microbial , Microbiota/genetics , Nitrification/genetics , Nitrogen/analysis , Nitrogen Cycle/genetics , Nitrous Oxide/metabolism , Soil/chemistry , Urease/genetics , Urease/metabolism
13.
Environ Int ; 144: 106068, 2020 11.
Article in English | MEDLINE | ID: mdl-32871382

ABSTRACT

Atmospheric CO2 concentration is increasing, largely due to anthropogenic activities. Previous studies of individual free-air CO2 enrichment (FACE) experimental sites have shown significant impacts of elevated CO2 (eCO2) on soil microbial communities; however, no common microbial response patterns have yet emerged, challenging our ability to predict ecosystem functioning and sustainability in the future eCO2 environment. Here we analyzed 66 soil microbial communities from five FACE sites, and showed common microbial response patterns to eCO2, especially for key functional genes involved in carbon and nitrogen fixation (e.g., pcc/acc for carbon fixation, nifH for nitrogen fixation), carbon decomposition (e.g., amyA and pulA for labile carbon decomposition, mnp and lcc for recalcitrant carbon decomposition), and greenhouse gas emissions (e.g., mcrA for methane production, norB for nitrous oxide production) across five FACE sites. Also, the relative abundance of those key genes was generally increased and directionally associated with increased biomass, soil carbon decomposition, and soil moisture. In addition, a further literature survey of more disparate FACE experimental sites indicated increased biomass, soil carbon decay, nitrogen fixation, methane and nitrous oxide emissions, plant and soil carbon and nitrogen under eCO2. A conceptual framework was developed to link commonly responsive functional genes with ecosystem processes, such as pcc/acc vs. soil carbon storage, amyA/pulA/mnp/lcc vs. soil carbon decomposition, and nifH vs. nitrogen availability, suggesting that such common responses of microbial functional genes may have the potential to predict ecosystem functioning and sustainability in the future eCO2 environment.


Subject(s)
Carbon Dioxide , Ecosystem , Biomass , Carbon Dioxide/analysis , Nitrogen , Soil , Soil Microbiology
14.
Nat Commun ; 11(1): 4897, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994415

ABSTRACT

Soil microbial respiration is an important source of uncertainty in projecting future climate and carbon (C) cycle feedbacks. However, its feedbacks to climate warming and underlying microbial mechanisms are still poorly understood. Here we show that the temperature sensitivity of soil microbial respiration (Q10) in a temperate grassland ecosystem persistently decreases by 12.0 ± 3.7% across 7 years of warming. Also, the shifts of microbial communities play critical roles in regulating thermal adaptation of soil respiration. Incorporating microbial functional gene abundance data into a microbially-enabled ecosystem model significantly improves the modeling performance of soil microbial respiration by 5-19%, and reduces model parametric uncertainty by 55-71%. In addition, modeling analyses show that the microbial thermal adaptation can lead to considerably less heterotrophic respiration (11.6 ± 7.5%), and hence less soil C loss. If such microbially mediated dampening effects occur generally across different spatial and temporal scales, the potential positive feedback of soil microbial respiration in response to climate warming may be less than previously predicted.


Subject(s)
Carbon/analysis , Metagenome/genetics , Microbiota/physiology , Soil Microbiology , Soil/chemistry , Acclimatization/genetics , Archaea/genetics , Archaea/isolation & purification , Archaea/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Carbon/metabolism , Carbon Cycle , Cellulose/metabolism , DNA, Environmental/genetics , DNA, Environmental/isolation & purification , Fungi/genetics , Fungi/isolation & purification , Fungi/metabolism , Global Warming , Grassland , Hot Temperature/adverse effects , Metagenomics , Models, Genetic , Plant Roots/chemistry , Poaceae/chemistry
15.
ISME J ; 14(11): 2862-2876, 2020 11.
Article in English | MEDLINE | ID: mdl-32934357

ABSTRACT

Elevated nitrate in the environment inhibits sulfate reduction by important microorganisms of sulfate-reducing bacteria (SRB). Several SRB may respire nitrate to survive under elevated nitrate, but how SRB that lack nitrate reductase survive to elevated nitrate remains elusive. To understand nitrate adaptation mechanisms, we evolved 12 populations of a model SRB (i.e., Desulfovibrio vulgaris Hildenborough, DvH) under elevated NaNO3 for 1000 generations, analyzed growth and acquired mutations, and linked their genotypes with phenotypes. Nitrate-evolved (EN) populations significantly (p < 0.05) increased nitrate tolerance, and whole-genome resequencing identified 119 new mutations in 44 genes of 12 EN populations, among which six functional gene groups were discovered with high mutation frequencies at the population level. We observed a high frequency of nonsense or frameshift mutations in nitrosative stress response genes (NSR: DVU2543, DVU2547, and DVU2548), nitrogen regulatory protein C family genes (NRC: DVU2394-2396, DVU2402, and DVU2405), and nitrate cluster (DVU0246-0249 and DVU0251). Mutagenesis analysis confirmed that loss-of-functions of NRC and NSR increased nitrate tolerance. Also, functional gene groups involved in fatty acid synthesis, iron regulation, and two-component system (LytR/LytS) known to be responsive to multiple stresses, had a high frequency of missense mutations. Mutations in those gene groups could increase nitrate tolerance through regulating energy metabolism, barring entry of nitrate into cells, altering cell membrane characteristics, or conferring growth advantages at the stationary phase. This study advances our understanding of nitrate tolerance mechanisms and has important implications for linking genotypes with phenotypes in DvH.


Subject(s)
Desulfovibrio vulgaris , Desulfovibrio , Desulfovibrio vulgaris/genetics , Genotype , Nitrates , Nitrogen Oxides , Oxidation-Reduction , Sulfates
16.
PLoS One ; 15(9): e0232437, 2020.
Article in English | MEDLINE | ID: mdl-32986713

ABSTRACT

Subsurface microbial communities mediate the transformation and fate of redox sensitive materials including organic matter, metals and radionuclides. Few studies have explored how changing geochemical conditions influence the composition of groundwater microbial communities over time. We temporally monitored alterations in abiotic forces on microbial community structure using 1L in-field bioreactors receiving background and contaminated groundwater at the Oak Ridge Reservation, TN. Planktonic and biofilm microbial communities were initialized with background water for 4 days to establish communities in triplicate control reactors and triplicate test reactors and then fed filtered water for 14 days. On day 18, three reactors were switched to receive filtered groundwater from a contaminated well, enriched in total dissolved solids relative to the background site, particularly chloride, nitrate, uranium, and sulfate. Biological and geochemical data were collected throughout the experiment, including planktonic and biofilm DNA for 16S rRNA amplicon sequencing, cell counts, total protein, anions, cations, trace metals, organic acids, bicarbonate, pH, Eh, DO, and conductivity. We observed significant shifts in both planktonic and biofilm microbial communities receiving contaminated water. This included a loss of rare taxa, especially amongst members of the Bacteroidetes, Acidobacteria, Chloroflexi, and Betaproteobacteria, but enrichment in the Fe- and nitrate- reducing Ferribacterium and parasitic Bdellovibrio. These shifted communities were more similar to the contaminated well community, suggesting that geochemical forces substantially influence microbial community diversity and structure. These influences can only be captured through such comprehensive temporal studies, which also enable more robust and accurate predictive models to be developed.


Subject(s)
Bacteria , Geologic Sediments/microbiology , Groundwater/chemistry , Metals, Heavy/analysis , Microbiota , Soil Microbiology , Bacteria/classification , Bacteria/growth & development , Biofilms , Bioreactors/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics
17.
Front Microbiol ; 11: 1899, 2020.
Article in English | MEDLINE | ID: mdl-32849472

ABSTRACT

Short rotation coppice (SRC) with metal tolerant plants may attenuate the pollution of excessive elements with potential toxicity in soils, while preserving soil resources and functionality. Here, we investigated effects of 6 years phytomanagement with willow SRC on properties including heavy metal levels, toxicity tested by BioTox, microbial biomass, enzyme activities, and functional gene abundances measured by GeoChip of soils contaminated by As, Cd, Pb and Zn, as compared to the same soils under non-managed mixed grassland representing no intervention treatment (Unt). Though metal total concentrations did not differ by SRC and Unt, SRC soils had lower metal availability and toxicity, higher organic carbon, microbial biomass, phosphatase, urease and protease activities, as compared to Unt soils. Significantly reduced abundances of genes encoding resistances to various metals and antibiotics were observed in SRC, likely attributed to reduced metal selective pressure based on less heavy metal availability and soil toxicity. SRC also significantly reduced abundances of genes involved in nitrogen, phosphorus, and sulfur cycles, possibly due to the willow induced selection. Overall, while the SRC phytomanagement did not reduce the total heavy metal concentrations in soils, it decreased the heavy metal availability and soil toxicity, which in turn led to less metal selective pressure on microbial communities. The SRC phytomanagement also reduced the abundances of nutrient cycling genes from microbial communities, possibly due to intense plant nutrient uptake that depleted soil nitrogen and phosphorus availability, and thus site-specific practices should be considered to improve the soil nutrient supply for phytomanagement plants.

18.
Sci Total Environ ; 725: 138504, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32302850

ABSTRACT

Nitrous oxide (N2O) is an important greenhouse gas contributing to global climate change. Emissions of N2O from acidic forests are increasing rapidly; however, little is known about the mechanisms driving these emissions. We analyzed soil samples from a high N2O emission area (HEA, 224-601 µg N m-2 h-1) and an adjacent low emission area (LEA, 20-30 µg N m-2 h-1) of a highly acidified forest. HEA showed similar carbon and nitrogen (N) pools and microbial biomass to LEA, but significantly higher moisture and extractable nutrients than LEA did. GeoChip 4 detected 298 gene families (unadjusted P < 0.05; 94, adjusted P < 0.05) showing significantly different structures between HEA and LEA. Both areas had highly diverse N cycling functional genes. However, HEA had higher relative abundances of nor, P450nor, and archaeal nitrifier nirK, which provided evidence for the importance of denitrifiers in N2O emission. HEA also showed significantly higher relative abundances of lignin- and cellulose-degrading genes, oxygen-limitation-response genes and denitrifier ppk, but lower abundances of N- and phosphorus (P) -limitation-response genes especially denitrifier pstS, corresponding to the higher moisture and extractable nutrients conducive to denitrification. The moisture, extractable nutrients and pH explained over 50% variation in microbial communities, and extractable P appeared as the key factor driving community variation and consequently regulated N2O production. CAPSULE ABSTRACT: N2O emission in highly acidified forest soils was related to the diverse N functional genes, especially denitrification genes, and was affected by soil properties.


Subject(s)
Microbiota , Soil , Denitrification , Forests , Nitrous Oxide/analysis , Soil Microbiology
19.
Environ Sci Technol ; 54(9): 5884-5892, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32259441

ABSTRACT

Scientific understanding of microbial biogeography and assembly is lacking for activated sludge microbial communities, even though the diversity of microbial communities in wastewater treatment plants (WWTPs) is thought to have a direct influence on system performance. Here, utilizing large-scale 16S rRNA gene data generated from 211 activated sludge samples collected from 15 cities across China, we show activated sludge microbes, whose growth and metabolism can be regulated followed with the metabolic theory of ecology with an apparent Ea value (apparent activation energy) of 0.08 eV. WWTPs at a lower latitude tend to harbor a more diverse array of microorganisms. In agreement with the general understanding, the activated sludge microbial assembly was mainly driven by deterministic processes and the mean annual temperature was identified as the most important factor affecting the microbial community structure. The treatment process types with similar microbial growth types and functions had a distinct impact on the activated sludge microbial community structure only when WWTPs were located near each other and received similar influent. Overall, these findings provide us with a deeper understanding of activated sludge microbial communities from an ecological perspective. Moreover, these findings suggest that, for a given set of performance characteristics (e.g., combined nitrification, denitrification, and phosphorus removal), it may be difficult to employ common engineering levers to control additional aspects of community structure due to the influence of natural environmental factors.


Subject(s)
Microbiota , Wastewater , Bioreactors , China , Cities , RNA, Ribosomal, 16S , Sewage , Waste Disposal, Fluid
20.
Microbiome ; 8(1): 3, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31952472

ABSTRACT

BACKGROUND: It is well-known that global warming has effects on high-latitude tundra underlain with permafrost. This leads to a severe concern that decomposition of soil organic carbon (SOC) previously stored in this region, which accounts for about 50% of the world's SOC storage, will cause positive feedback that accelerates climate warming. We have previously shown that short-term warming (1.5 years) stimulates rapid, microbe-mediated decomposition of tundra soil carbon without affecting the composition of the soil microbial community (based on the depth of 42684 sequence reads of 16S rRNA gene amplicons per 3 g of soil sample). RESULTS: We show that longer-term (5 years) experimental winter warming at the same site altered microbial communities (p < 0.040). Thaw depth correlated the strongest with community assembly and interaction networks, implying that warming-accelerated tundra thaw fundamentally restructured the microbial communities. Both carbon decomposition and methanogenesis genes increased in relative abundance under warming, and their functional structures strongly correlated (R2 > 0.725, p < 0.001) with ecosystem respiration or CH4 flux. CONCLUSIONS: Our results demonstrate that microbial responses associated with carbon cycling could lead to positive feedbacks that accelerate SOC decomposition in tundra regions, which is alarming because SOC loss is unlikely to subside owing to changes in microbial community composition. Video Abstract.


Subject(s)
Carbon Cycle , Global Warming , Microbiota , Permafrost/microbiology , Soil Microbiology , Soil/chemistry , Carbon/metabolism , Methane/metabolism , RNA, Ribosomal, 16S/genetics , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...