Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ambio ; 52(1): 195-209, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36001251

ABSTRACT

Canals and canalized rivers form a major part of surface water systems in European delta cities and societal ambitions to use these waters increase. This is the first assessment of how suitability of these waters can improve for three important uses: transportation, thermal energy extraction (TEE) and recreation. We assess suitability with Suitability Indices (SIs) and identify which alterations in the water system are needed to improve SI scores in Amsterdam, The Netherlands, and Ghent, Belgium. The results show spatial variability in suitability scores. Current suitability for transportation is low (SI score = 1) to excellent (SI score = 4), for TEE fair (SI score = 2) to excellent (SI score = 4), and suitability for recreation is low (SI score = 1). Suitability could improve by enlarging specific waterway dimensions, increasing discharge and clarity, and by enhancing microbiological water quality. The same methodology can be applied to optimize designs for new water bodies and for more water uses.


Subject(s)
Environmental Monitoring , Rivers , Rivers/microbiology , Cities , Environmental Monitoring/methods , Recreation , Water Quality
2.
Water Int ; 45(1): 39-59, 2020.
Article in English | MEDLINE | ID: mdl-32256943

ABSTRACT

Most rice farmers in Nepal's Terai region do not fully utilize irrigation during breaks in monsoon rainfall. This leads to yield losses despite abundant groundwater resources and ongoing expansion of diesel pumps and tubewell infrastructure. We investigate this puzzle by characterizing delay factors governing tubewell irrigation across wealth and precipitation gradients. After the decision to irrigate, different factors delay irrigation by roughly one week. While more sustainable and inexpensive energy for pumping may eventually catalyze transformative change, we identify near-term interventions that may increase rice farmers' resilience to water stress in smallholder-dominated farming communities based on prevailing types of irrigation infrastructure.

3.
Sci Total Environ ; 705: 135925, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31841921

ABSTRACT

Adequate tools for evaluating sustainable intensification (SI) of crop production for agro-hydrological system are not readily available. Building on existing concepts, we propose a framework for evaluating SI at the field and river basin levels. The framework serves as a means to assess and visualise SI indicator values, including yield, water-use efficiency and nitrogen-use efficiency (NUE), alongside water and nitrogen surpluses and their effects on water quantity and quality. To demonstrate the SI assessment framework, we used empirical data for both the field level (the Static Fertilization Experiment at Bad Lauchstädt) and the river basin level (the Selke basin, 463 km2) in central Germany. Crop yield and resource use efficiency varied considerably from 1980 to 2014, but without clear trends. NUE frequently fell below the desirable range (<50%), exposing the environment to a large N surplus (>80 kg N ha-1). For the catchment as a whole, the average nitrate-N concentration (3.6 mg L-1) was slightly higher than the threshold of 2.5 mg L-1 nitrate-N in surface water. However, weather and climate-related patterns, due to their effects on transport capacity and dilution, influenced water quantity and quality indicators more than agronomic practices. To achieve SI of crop production in the Selke basin, irrigation and soil moisture management are required to reduce yield variability and reduce N surpluses at field level. In addition, optimum application of fertiliser and manure could help to reduce the nitrate-N concentration below the set water quality standards in the Selke basin. In this way, there is scope for increase in yields and resource use efficiencies, and thus potential reduction of environmental impacts at basin level. We conclude that the framework is useful for assessing sustainable production, by simultaneously considering objectives related to crop production, resource-use efficiency and environmental quality, at both field and river basin levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...