Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Diving Hyperb Med ; 54(2): 105-109, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38870952

ABSTRACT

Introduction: Routine dipstick urinalysis is part of many dive medical assessment protocols. However, this has a significant chance of producing false-positive or false-negative results in asymptomatic and healthy individuals. Studies evaluating the value of urinalysis in dive medical assessments are limited. Methods: All results from urinalysis as part of dive medical assessments of divers, submarines, and hyperbaric personnel of the Royal Netherlands Navy from 2013 to 2023 were included in this study. Additionally, any information regarding additional testing, referral, or test results concerning the aforementioned was collected. Results: There were 5,899 assessments, resulting in 46 (0.8%) positive dipstick urinalysis results, predominantly microscopic haematuria. Females were significantly overrepresented, and revisions resulted in significantly more positive test results than initial assessments. Lastly, almost half of the cases were deemed fit to dive, while the other half were regarded as temporarily unfit. These cases required additional testing, and a urologist was consulted three times. Conclusions: To our knowledge, this is the most extensive study evaluating urinalysis in dive medical assessments. In our military population, the incidence of positive test results is very low, and there have not been clinically relevant results over a period of 10 years. Therefore, routinely assessing urine in asymptomatic healthy military candidates is not cost-effective or efficacious. The authors advise taking a thorough history for fitness to dive assessments and only analysing urine when a clinical indication is present.


Subject(s)
Diving , Hematuria , Military Personnel , Urinalysis , Humans , Urinalysis/methods , Female , Diving/physiology , Male , Adult , Hematuria/diagnosis , Hematuria/urine , Physical Fitness/physiology , Submarine Medicine , Middle Aged , Netherlands , Young Adult , False Positive Reactions
2.
Metabolites ; 14(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786758

ABSTRACT

Volatile organic compounds (VOCs) might be associated with pulmonary oxygen toxicity (POT). This pilot study aims to identify VOCs linked to oxidative stress employing an in vitro model of alveolar basal epithelial cells exposed to hyperbaric and hyperoxic conditions. In addition, the feasibility of this in vitro model for POT biomarker research was evaluated. The hyperbaric exposure protocol, similar to the U.S. Navy Treatment Table 6, was conducted on human alveolar basal epithelial cells, and the headspace VOCs were analyzed using gas chromatography-mass spectrometry. Three compounds (nonane [p = 0.005], octanal [p = 0.009], and decane [p = 0.018]), of which nonane and decane were also identified in a previous in vivo study with similar hyperbaric exposure, varied significantly between the intervention group which was exposed to 100% oxygen and the control group which was exposed to compressed air. VOC signal intensities were lower in the intervention group, but cellular stress markers (IL8 and LDH) confirmed increased stress and injury in the intervention group. Despite the observed reductions in compound expression, the model holds promise for POT biomarker exploration, emphasizing the need for further investigation into the complex relationship between VOCs and oxidative stress.

3.
Diving Hyperb Med ; 54(1): 39-46, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38507908

ABSTRACT

Introduction: Diving injuries are influenced by a multitude of factors. Literature analysing the full chain of events in diving accidents influencing the occurrence of diving injuries is limited. A previously published 'chain of events analysis' (CEA) framework consists of five steps that may sequentially lead to a diving fatality. This study applied four of these steps to predominately non-lethal diving injuries and aims to determine the causes of diving injuries sustained by divers treated by the Diving Medical Centre of the Royal Netherlands Navy. Methods: This retrospective cohort study was performed on diving injuries treated by the Diving Medical Centre between 1966 and 2023. Baseline characteristics and information pertinent to all four steps of the reduced CEA model were extracted and recorded in a database. Results: A total of 288 cases met the inclusion criteria. In 111 cases, all four steps of the CEA model could be applied. Predisposing factors were identified in 261 (90%) cases, triggers in 142 (49%), disabling agents in 195 (68%), and 228 (79%) contained a (possible-) disabling condition. The sustained diving injury led to a fatality in seven cases (2%). The most frequent predisposing factor was health conditions (58%). Exertion (19%), primary diver errors (18%), and faulty equipment (17%) were the most frequently identified triggers. The ascent was the most frequent disabling agent (52%). Conclusions: The CEA framework was found to be a valuable tool in this analysis. Health factors present before diving were identified as the most frequent predisposing factors. Arterial gas emboli were the most lethal injury mechanism.


Subject(s)
Decompression Sickness , Diving , Embolism, Air , Humans , Diving/adverse effects , Diving/injuries , Netherlands/epidemiology , Retrospective Studies , Accidents , Decompression Sickness/epidemiology , Decompression Sickness/etiology , Decompression Sickness/therapy
4.
Diving Hyperb Med ; 53(4): 340-344, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38091594

ABSTRACT

Pulmonary oxygen toxicity (POT), an adverse reaction to an elevated partial pressure of oxygen in the lungs, can develop as a result of prolonged hyperbaric hyperoxic conditions. Initially starting with tracheal discomfort, it results in pulmonary symptoms and ultimately lung fibrosis. Previous studies identified several volatile organic compounds (VOCs) in exhaled breath indicative of POT after various wet and dry hyperbaric hypoxic exposures, predominantly in laboratory settings. This study examined VOCs after exposures to 81 metres of seawater by three navy divers during operational heliox diving. Univariate testing did not yield significant results. However, targeted multivariate analysis of POT-associated VOCs identified significant (P = 0.004) changes of dodecane, tetradecane, octane, methylcyclohexane, and butyl acetate during the 4 h post-dive sampling period. No airway symptoms or discomfort were reported. This study demonstrates that breath sampling can be performed in the field, and VOCs indicative of oxygen toxicity are exhaled without clinical symptoms of POT, strengthening the belief that POT develops on a subclinical-to-symptomatic spectrum. However, this study was performed during an actual diving operation and therefore various confounders were introduced, which were excluded in previous laboratory studies. Future studies could focus on optimising sampling protocols for field use to ensure uniformity and reproducibility, and on establishing dose-response relationships.


Subject(s)
Diving , Hyperoxia , Humans , Diving/adverse effects , Diving/physiology , Reproducibility of Results , Oxygen/adverse effects , Helium , Hyperoxia/chemically induced
5.
Undersea Hyperb Med ; 50(3): 301-306, 2023.
Article in English | MEDLINE | ID: mdl-37708063

ABSTRACT

A recent review suggested that the measure K = t² x pO2 [4.57] (t is exposure time in h, pO in atm) should replace unit pulmonary toxic dose (UPTD) as an exposure index for pulmonary oxygen toxicity (POT) in surface-oriented diving. K would better predict reduction in vital capacity (VC) during exposure and allow prediction of recovery. Although K is more accurate estimating VC changes than UPTD, the calculation of K is more extensive, particularly when estimating hyperoxic exposure for dives with multiple pO2 segments. Furthermore, and in contrast with UPTD, K is difficult to interpret on its own given its non- linear dimension of time. We suggest that a new metric: ESOT (equivalent surface oxygen time) should be used to replace UPTD. ESOT = t x pO2 [2.285] (t is exposure time in minutes, pO in atm). ESOT=1 is thus the hyperoxic exposure reached after one minute of breathing 100% O2 at surface pressure. Hyperoxic monitoring by ESOT is more practical than K to apply in an operational environment, with no loss of accuracy in POT prediction. In addition, it intuitively allows interpreting hyperoxic exposures on its own, analogous to UPTD. The daily hyperoxic threshold limits suggested by Risberg and van Ooij for two, five and an unlimited number of successive diving days would translate to ESOTs of 650, 500 and 420 respectively.

6.
Diving Hyperb Med ; 53(3): 189-202, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37718292

ABSTRACT

Background: There is an increasing interest in 'transfer under pressure' (TUP) decompression in commercial diving, bridging traditional surface-oriented diving and saturation diving. In TUP diving the diver is surfaced in a closed bell and transferred isobarically to a pressure chamber for final decompression to surface pressure. Methods: Tables for air diving and air and oxygen decompression have been compared for total decompression time (TDT), oxygen breathing time as well as high and low gradient factors (GF high and low). These have been considered surrogate outcome measures of estimated decompression sickness probability (PDCS). Results: Six decompression tables from DadCoDat (DCD, The Netherlands), Defence and Civil Institute of Environmental Medicine (DCIEM, Canada), Comex MT92 tables (France) and the United States Navy (USN) have been compared. In general, USN and DCD procedures advised longer TDT and oxygen breathing time and had a lower GF high compared to MT92 and DCIEM tables. GF low was significantly higher in USN procedures compared to DCD and one of the MT92 tables due to a shallower first stop in many USN profiles compared to the two others. Allowance and restrictions for repetitive diving varied extensively between the six procedures. While USN procedures have been risk-assessed by probabilistic models, no detailed documentation is available for any of the tables regarding validation in experimental and operational diving. Conclusions: Absence of experimental testing of the candidate tables precludes firm conclusions regarding differences in PDCS. All candidate tables are recognised internationally as well as within their national jurisdictions, and final decisions on procedure preference may depend on factors other than estimated PDCS. USN and DCD procedures would be expected to have lower PDCS than MT92 and DCIEM procedures, but the magnitude of these differences is not known.


Subject(s)
Diving , Humans , Canada , Netherlands , Oxygen , Decompression
7.
Diving Hyperb Med ; 53(3): 218-223, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37718295

ABSTRACT

Introduction: Living aboard submarines has a potential negative effect on health. Although studies have evaluated specific health hazards and short-term outcomes, long-term health effects have not been investigated in this population. Methods: Veteran submariners were contacted through the veterans' society and administered a World Health Organisation validated questionnaire (SF-36) assessing their physical, emotional, and social functioning. Scores were compared with those of the general (reference) population and scores in veteran submariners were differentiated by rank, time at sea and time in service. Statistical analyses were performed using the Wilcoxon signed rank and Kruskal-Wallis tests. Results: Of the 1,025 submariners approached in December 2019, 742 (72.4%) completed and returned the questionnaire before July 2020. All 742 were men, of median age 68 (interquartile range [IQR] 59-76) years (range 34-99 years). Of these subjects, 10.3% were current smokers, 64.4% were former smokers and 23.7% had never smoked. Submariners scored significantly better (P < 0.001) than the general population on all eight domains of the SF-36. Except for 'pain' and 'change in health status over the last year', scores for all domains decreased with age. Scores were not significantly affected by smoking status, rank, service, and time at sea. Conclusions: Dutch veteran submariners have better self-reported vitality and health status than the general Dutch population. Rank, service, and time at sea did not significantly affect scores of Dutch submariners.


Subject(s)
Military Personnel , Male , Humans , Middle Aged , Aged , Female , Self Report , Health Status
8.
Diving Hyperb Med ; 53(2): 120-128, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37365129

ABSTRACT

INTRODUCTION: In the diving community there is a special need to know if asymptomatic or mild COVID-19 disease impacts the cardiopulmonary functioning of individuals with occupational exposure to extreme environments. To date, no controlled studies have been conducted comparing COVID-19-infected hyperbaric employees and non-COVID-19-infected peers in a military setting. METHODS: Between June 2020 and June 2021, healthy, hyperbaric, military personnel aged between 18 and 54 years old, who had recovered from asymptomatic or subclinical COVID-19 disease at least one month earlier, were analysed. Non-COVID-infected peers with medical assessments during the same period were used as the control group. Somatometry, spirometry, VO2 max, and DLCO were measured for each group. RESULTS: No clinically relevant differences in somatometry, lung function tests, and exercise testing were found between the COVID-19 group and the controls. However, the percentage of individuals with a decrease in estimated VO2-max of 10% or more was significantly greater in the COVID group than in the control group (24 vs. 7.8%, P = 0.004). CONCLUSIONS: After asymptomatic or mild symptomatic COVID-19 infections, military hyperbaric employees are as fit as those who had not encountered COVID-19. As this research was based on a military population, it cannot be extrapolated to a nonmilitary population. Further studies in nonmilitary populations are necessary to determine the medical relevance of the present findings.


Subject(s)
COVID-19 , Military Personnel , Humans , Infant , Child, Preschool , Retrospective Studies , Respiratory Function Tests , Spirometry
9.
Metabolites ; 13(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36984755

ABSTRACT

The COMEX-30 hyperbaric treatment table is used to manage decompression sickness in divers but may result in pulmonary oxygen toxicity (POT). Volatile organic compounds (VOCs) in exhaled breath are early markers of hyperoxic stress that may be linked to POT. The present study assessed whether VOCs following COMEX-30 treatment are early markers of hyperoxic stress and/or POT in ten healthy, nonsmoking volunteers. Because more oxygen is inhaled during COMEX-30 treatment than with other treatment tables, this study hypothesized that VOCs exhaled following COMEX-30 treatment are indicators of POT. Breath samples were collected before and 0.5, 2, and 4 h after COMEX-30 treatment. All subjects were followed-up for signs of POT or other symptoms. Nine compounds were identified, with four (nonanal, decanal, ethyl acetate, and tridecane) increasing 33-500% in intensity from before to after COMEX-30 treatment. Seven subjects reported pulmonary symptoms, five reported out-of-proportion tiredness and transient ear fullness, and four had signs of mild dehydration. All VOCs identified following COMEX-30 treatment have been associated with inflammatory responses or pulmonary diseases, such as asthma or lung cancer. Because most subjects reported transient pulmonary symptoms reflecting early-stage POT, the identified VOCs are likely markers of POT, not just hyperbaric hyperoxic exposure.

10.
Undersea Hyperb Med ; 49(4): 395-413, 2022.
Article in English | MEDLINE | ID: mdl-36446287

ABSTRACT

Depending on pO2 and exposure time hyperoxic breathing gas may cause injury in many organs including the lungs. Pulmonary oxygen toxicity (POT) may be asymptomatic, but will initially present as a tracheobronchitis in symptomatic subjects. A number of objective measurements of POT have been investigated, but the decrement in vital capacity (VC) has remained the most accepted outcome measure. The unit pulmonary toxic dose (UPTD) has been established as the most common exposure index for POT in diving. UPTD is calculated based on the pO2 and exposure time. A literature search identified five models predicting POT, but no model would accurately predict VC change for the full range of pO2 variation and exposure time relevant for surface-oriented diving. Nevertheless, compared to UPTD, the K-index (K = t2*pO24.57, where t = time (hours) and pO2 = inspired pO2 (atm)) suggested by Arieli performed better for pO2 > 150 kPa and allowed estimation of recovery. We recommend that the Arieli K-index should replace UPTD as the POT exposure index for all surface-oriented diving. Based on the limited data available we suggest a daily threshold of K = 120 for a maximum of two diving days followed by two days of recovery. For five consecutive days of diving, we recommend that the threshold should not exceed K=70 and two recovery days should be allowed. For multiday diving without days of recovery, the daily exposure should probably be limited to K = 40-50.


Subject(s)
Diving , Hyperoxia , Humans , Diving/adverse effects , Hyperoxia/complications , Vital Capacity , Oxygen , Lung
11.
Metabolites ; 12(5)2022 May 23.
Article in English | MEDLINE | ID: mdl-35629974

ABSTRACT

Diving or hyperbaric oxygen therapy with increased partial pressures of oxygen (pO2) can have adverse effects such as central nervous system oxygen toxicity or pulmonary oxygen toxicity (POT). Prevention of POT has been a topic of interest for several decades. One of the most promising techniques to determine early signs of POT is the analysis of volatile organic compounds (VOCs) in exhaled breath. We reanalyzed the data of five studies to compose a library of potential exhaled markers for the early detection of POT. GC-MS data from five hyperbaric hyperoxic studies were collected. Wilcoxon signed-rank tests were used to compare baseline- and postexposure measurements; all ion fragments that significantly varied were compared by similarity using the National Institute of Standards and Technology (NIST) library. All identified molecules were cross-referenced with open-source databases and other scientific publications on VOCs to exclude compounds that occurred as a result of contamination, and to identify the compounds most likely to occur due to hyperbaric hyperoxic exposure. After identification and removal of contaminants, 29 compounds were included in the library. This library of hyperbaric hyperoxic-related VOCs can help to advance the development of an early noninvasive marker of POT. It enables validation by others who use more targeted MS-related techniques, instead of full-scale GC-MS, for their exhaled VOC research.

12.
Front Physiol ; 13: 899568, 2022.
Article in English | MEDLINE | ID: mdl-35620607

ABSTRACT

Introduction: The hyperbaric oxygen treatment table 6 (TT6) is widely used to manage dysbaric illnesses in divers and iatrogenic gas emboli in patients after surgery and other interventional procedures. These treatment tables can have adverse effects, such as pulmonary oxygen toxicity (POT). It is caused by reactive oxygen species' damaging effect in lung tissue and is often experienced after multiple days of therapy. The subclinical pulmonary effects have not been determined. The primary aim of this study was to measure volatile organic compounds (VOCs) in breath, indicative of subclinical POT after a TT6. Since the exposure would be limited, the secondary aim of this study was to determine whether these VOCs decreased to baseline levels within a few hours. Methods: Fourteen healthy, non-smoking volunteers from the Royal Netherlands Navy underwent a TT6 at the Amsterdam University Medical Center-location AMC. Breath samples for GC-MS analysis were collected before the TT6 and 30 min, 2 and 4 h after finishing. The concentrations of ions before and after exposure were compared by Wilcoxon signed-rank tests. The VOCs were identified by comparing the chromatograms with the NIST library. Compound intensities over time were tested using Friedman tests, with Wilcoxon signed-rank tests and Bonferroni corrections used for post hoc analyses. Results: Univariate analyses identified 11 compounds. Five compounds, isoprene, decane, nonane, nonanal and dodecane, showed significant changes after the Friedman test. Isoprene demonstrated a significant increase at 30 min after exposure and a subsequent decrease at 2 h. Other compounds remained constant, but declined significantly 4 h after exposure. Discussion and Conclusion: The identified VOCs consisted mainly of (methyl) alkanes, which may be generated by peroxidation of cell membranes. Other compounds may be linked to inflammatory processes, oxidative stress responses or cellular metabolism. The hypothesis, that exhaled VOCs would increase after hyperbaric exposure as an indicator of subclinical POT, was not fulfilled, except for isoprene. Hence, no evident signs of POT or subclinical pulmonary damage were detected after a TT6. Further studies on individuals recently exposed to pulmonary irritants, such as divers and individuals exposed to other hyperbaric treatment regimens, are needed.

15.
J Clin Med ; 9(3)2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32121051

ABSTRACT

The use of an inspiratory oxygen fraction of 0.80 during surgery is a topic of ongoing debate. Opponents claim that increased oxidative stress, atelectasis, and impaired oxygen delivery due to hyperoxic vasoconstriction are detrimental. Proponents point to the beneficial effects on the incidence of surgical site infections and postoperative nausea and vomiting. Also, hyperoxygenation is thought to extend the safety margin in case of acute intraoperative emergencies. This review provides a comprehensive risk-benefit analysis for the use of perioperative hyperoxia in noncritically ill adults based on clinical evidence and supported by physiological deduction where needed. Data from the field of hyperbaric medicine, as a model of extreme hyperoxygenation, are extrapolated to the perioperative setting. We ultimately conclude that current evidence is in favour of hyperoxia in noncritically ill intubated adult surgical patients.

16.
Diving Hyperb Med ; 50(1): 2-7, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32187611

ABSTRACT

INTRODUCTION: The Netherlands Maritime Special Operations Forces use closed circuit oxygen rebreathers (O2-CCR), which can cause pulmonary oxygen toxicity (POT). Recent studies demonstrated that volatile organic compounds (VOCs) can be used to detect POT in laboratory conditions. It is unclear if similar VOCs can be identified outside the laboratory. This study hypothesised that similar VOCs can be identified after O2-CCR diving in operational settings. METHODS: Scenario one: 4 h O2-CCR dive to 3 metres' seawater (msw) with rested divers. Scenario two: 3 h O2-CCR dive to 3 msw following a 5 day physically straining operational scenario. Exhaled breath samples were collected 30 min before and 30 min and 2 h after diving under field conditions and analysed using gas chromatography-mass spectrometry (GC-MS) to reconstruct VOCs, whose levels were tested longitudinally using a Kruskal-Wallis test. RESULTS: Eleven divers were included: four in scenario one and seven in scenario two. The 2 h post-dive sample could not be obtained in scenario two; therefore, 26 samples were collected. GC-MS analysis identified three relevant VOCs: cyclohexane, 2,4-dimethylhexane and 3-methylnonane. The intensities of 2,4-dimethylhexane and 3-methylnonane were significantly (P = 0.048 and P = 0.016, respectively) increased post-dive relative to baseline (range: 212-461%) in both scenarios. Cyclohexane was increased not significantly (P = 0.178) post-dive (range: 87-433%). CONCLUSIONS: VOCs similar to those associated with POT in laboratory conditions were identified after operational O2-CCR dives using GC-MS. Post-dive intensities were higher than in previous studies, and it remains to be determined if this is attributable to different dive profiles, diving equipment or other environmental factors.


Subject(s)
Lung , Adult , Diving , Humans , Hyperoxia , Netherlands , Oxygen
17.
Front Physiol ; 11: 613398, 2020.
Article in English | MEDLINE | ID: mdl-33488401

ABSTRACT

Introduction: Intrapulmonary pathology, such as bullae or blebs, can cause pulmonary barotrauma when diving. Many diving courses require chest X-rays (CXR) or high-resolution computed tomography (HRCT) to exclude asymptomatic healthy individuals with these lesions. The ability of routine CXRs and HRCT to assess fitness to dive has never been evaluated. Methods: Military divers who underwent yearly medical assessments at the Royal Netherlands Navy Diving Medical Center, including CXR at initial assessment, and who received a HRCT between January and June 2018, were included. The correlations of CXR and HRCT results with fitness to dive assessments were analyzed using Fisher's exact tests. Results: This study included 101 military divers. CXR identified bullae or blebs in seven divers, but HRCT found that these anomalies were not present in three subjects and were something else in four. CXR showed no anomalies in 94 subjects, but HRCT identified coincidental findings in 23 and bullae or blebs in seven. The differences between CXR and HRCT results were statistically significant (p = 0.023). Of the 34 subjects with anomalies on HRCT, 18 (53%) were disqualified for diving. Discussion: Routine CXR in asymptomatic military divers does not contribute to the identification of relevant pathology in fitness to dive assessments and has a high false negative rate (32%). HRCT is more diagnostic than CXR but yields unclear results, leading to disqualification for diving. Fitness to dive tests should exclude routine CXR; rather, HRCT should be performed only in subjects with clinical indications.

18.
Metabolites ; 9(12)2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31766640

ABSTRACT

Exposure to oxygen under increased atmospheric pressures can induce pulmonary oxygen toxicity (POT). Exhaled breath analysis using gas chromatography-mass spectrometry (GC-MS) has revealed that volatile organic compounds (VOCs) are associated with inflammation and lipoperoxidation after hyperbaric-hyperoxic exposure. Electronic nose (eNose) technology would be more suited for the detection of POT, since it is less time and resource consuming. However, it is unknown whether eNose technology can detect POT and whether eNose sensor data can be associated with VOCs of interest. In this randomized cross-over trial, the exhaled breath from divers who had made two dives of 1 h to 192.5 kPa (a depth of 9 m) with either 100% oxygen or compressed air was analyzed, at several time points, using GC-MS and eNose. We used a partial least square discriminant analysis, eNose discriminated oxygen and air dives at 30 min post dive with an area under the receiver operating characteristics curve of 79.9% (95%CI: 61.1-98.6; p = 0.003). A two-way orthogonal partial least square regression (O2PLS) model analysis revealed an R² of 0.50 between targeted VOCs obtained by GC-MS and eNose sensor data. The contribution of each sensor to the detection of targeted VOCs was also assessed using O2PLS. When all GC-MS fragments were included in the O2PLS model, this resulted in an R² of 0.08. Thus, eNose could detect POT 30 min post dive, and the correlation between targeted VOCs and eNose data could be assessed using O2PLS.

19.
Diving Hyperb Med ; 49(2): 127-136, 2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31177519

ABSTRACT

BACKGROUND: Physiological changes are induced by immersion, swimming and using diving equipment. Divers must be fit to dive. Using medication may impact the capacity to adapt to hyperbaric conditions. The aim of this systematic review is to assess the interaction of diving/hyperbaric conditions and medication and to provide basic heuristics to support decision making regarding fitness to dive in medicated divers. METHODS: This was a systematic review of human and animal studies of medications in the hyperbaric environment. Studies were subdivided into those describing a medication/hyperbaric environment interaction and those concerned with prevention of diving disorders. Studies without a relation to diving with compressed air, and those concerning oxygen toxicity, hyperbaric oxygen therapy or the treatment of decompression sickness were excluded. RESULTS: Forty-four studies matched the inclusion criteria. Animal studies revealed that diazepam and valproate gave limited protection against the onset of the high-pressure neurological syndrome. Lithium had a protective effect against nitrogen-narcosis and losartan reduced cardiac changes in repetitive diving. Human studies showed no beneficial or dangerous pressure-related interactions. In prevention of diving disorders, pseudoephedrine reduced otic barotrauma, vitamins C and E reduced endothelial dysfunction after bounce diving and hepatic oxidative stress in saturation diving. DISCUSSION AND CONCLUSIONS: Animal studies revealed that psycho-pharmaceuticals can limit the onset of neurologic symptoms and cardiovascular protective drugs might add a potential protective effect against decompression sickness. No evidence of significant risks due to changes in pharmacologic mechanisms were revealed and most medication is not a contraindication to diving. For improving decision making in prescribing medicine for recreational and occupational divers and to enhance safety by increasing our understanding of pharmacology in hyperbaric conditions, future research should focus on controlled human studies.


Subject(s)
Decompression Sickness , Diving , Hyperbaric Oxygenation , Inert Gas Narcosis , Animals , Humans , Swimming
20.
Front Physiol ; 10: 10, 2019.
Article in English | MEDLINE | ID: mdl-30740057

ABSTRACT

Introduction: Exposure to hyperbaric hyperoxic conditions can lead to pulmonary oxygen toxicity. Although a decrease in vital capacity has long been the gold standard, newer diagnostic modalities may be more accurate. In pulmonary medicine, much research has focussed on volatile organic compounds (VOCs) associated with inflammation in exhaled breath. In previous small studies after hyperbaric hyperoxic exposure several methyl alkanes were identified. This study aims to identify which VOCs mark the development of pulmonary oxygen toxicity. Methods: In this randomized crossover study, 12 divers of the Royal Netherlands Navy made two dives of one hour to 192.5 kPa (comparable to a depth of 9 msw) either with 100% oxygen or compressed air. At 30 min before the dive, and at 30 min and 1, 2, 3, and 4 h post-dive, exhaled breath was collected and followed by pulmonary function tests (PFT). Exhaled breath samples were analyzed using gas chromatography-mass spectrometry (GC-MS). After univariate tests and correlation of retention times, ion fragments could be identified using a standard reference database [National Institute of Standards and Technology (NIST)]. Using these fragments VOCs could be reconstructed, which were then tested longitudinally with analysis of variance. Results: After GC-MS analysis, seven relevant VOCs (generally methyl alkanes) were identified. Decane and decanal showed a significant increase after an oxygen dive (p = 0.020 and p = 0.013, respectively). The combined intensity of all VOCs showed a significant increase after oxygen diving (p = 0.040), which was at its peak (+35%) 3 h post-dive. Diffusion capacity of nitric oxide and alveolar membrane capacity showed a significant reduction after both dives, whereas no other differences in PFT were significant. Discussion: This study is the largest analysis of exhaled breath after in water oxygen dives to date and the first to longitudinally measure VOCs. The longitudinal setup showed an increase and subsequent decrease of exhaled components. The VOCs identified suggest that exposure to a one-hour dive with a partial pressure of oxygen of 192.5 kPa damages the phosphatidylcholine membrane in the alveoli, while the spirometry and diffusion capacity show little change. This suggests that exhaled breath analysis is a more accurate method to measure pulmonary oxygen toxicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...