Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 15(6): 9987-9999, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34110780

ABSTRACT

Colloidal heteronanocrystals allow for the synergistic combination of properties of different materials. For example, spatial separation of the photogenerated electron and hole can be achieved by coupling different semiconductors with suitable band offsets in one single nanocrystal, which is beneficial for improving the efficiency of photocatalysts and photovoltaic devices. From this perspective, axially segmented semiconductor heteronanorods with a type-II band alignment are particularly attractive since they ensure the accessibility of both photogenerated charge carriers. Here, a two-step synthesis route to Cu2-xS/CuInS2 Janus-type heteronanorods is presented. The heteronanorods are formed by injection of a solution of preformed Cu2-xS seed nanocrystals in 1-dodecanethiol into a solution of indium oleate in oleic acid at 240 °C. By varying the reaction time, Janus-type heteronanocrystals with different sizes, shapes, and compositions are obtained. A mechanism for the formation of the heteronanocrystals is proposed. The first step of this mechanism consists of a thiolate-mediated topotactic, partial Cu+ for In3+ cation exchange that converts one of the facets of the seed nanocrystals into CuInS2. This is followed by homoepitaxial anisotropic growth of wurtzite CuInS2. The Cu2-xS seed nanocrystals also act as sacrificial Cu+ sources, and therefore, single composition CuInS2 nanorods are eventually obtained if the reaction is allowed to proceed to completion. The two-stage seeded growth method developed in this work contributes to the rational synthesis of Cu2-xS/CuInS2 heteronanocrystals with targeted architectures by allowing one to exploit the size and faceting of premade Cu2-xS seed nanocrystals to direct the growth of the CuInS2 segment.

2.
J Phys Chem Lett ; 10(12): 3381-3389, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31141378

ABSTRACT

At an electrode, ions and solvent accumulate to screen charge, leading to a nanometer-scale electric double layer (EDL). The EDL guides electrode passivation in batteries, while in (super)capacitors, it determines charge storage capacity. Despite its importance, quantification of the nanometer-scale and potential-dependent EDL remains a challenging problem. Here, we directly probe changes in the EDL composition with potential using in situ vibrational spectroscopy and molecular dynamics simulations for a Li-ion battery electrolyte (LiClO4 in dimethyl carbonate). The accumulation rate of Li+ ions at the negative surface and ClO4- ions at the positive surface from vibrational spectroscopy compares well to that predicted by simulations using a polarizable APPLE&P force field. The ion solvation shell structure and ion-pairing within the EDL differs significantly from the bulk, especially at the negative electrode, suggesting that the common rationalization of interfacial electrochemical processes in terms of bulk ion solvation should be applied with caution.

3.
Chem Mater ; 31(2): 541-552, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30686859

ABSTRACT

In colloidal Cu2-x S nanocrystal synthesis, thiols are often used as organic ligands and the sulfur source, as they yield high-quality nanocrystals. However, thiol ligands on Cu2-x S nanocrystals are difficult to exchange, limiting the applications of these nanocrystals in photovoltaics, biomedical sensing, and photocatalysis. Here, we present an effective and facile procedure to exchange native 1-dodecanethiol on Cu2-x S nanocrystals by 3-mercaptopropionate, 11-mercaptoundecanoate, and S2- in formamide under inert atmosphere. The product hydrophilic Cu2-x S nanocrystals have excellent colloidal stability in formamide. Furthermore, the size, shape, and optical properties of the nanocrystals are not significantly affected by the ligand exchange. Water-dispersible Cu2-x S nanocrystals are easily obtained by precipitation of the nanocrystals capped by S2-, 3-mercaptopropionate, or 11-mercaptoundecanoate from formamide, followed by redispersion in water. Interestingly, the ligand exchange rates for Cu2-x S nanocrystals capped with 1-dodecanethiol are observed to depend on the preparation method, being much slower for Cu2-x S nanocrystals prepared through heating-up than through hot-injection synthesis protocols. XPS studies reveal that the differences in the ligand exchange rates are due to the surface chemistry of the Cu2-x S nanocrystals, where the nanocrystals prepared via hot-injection synthesis have a less dense ligand layer due to the presence of trioctylphosphine oxide during synthesis. A model is proposed that explains the observed differences in the ligand exchange rates. The facile ligand exchange procedures reported here enable the use of high-quality colloidal Cu2-x S nanocrystals prepared in the presence of 1-dodecanethiol in various applications.

4.
Chem Soc Rev ; 46(1): 102-125, 2017 Jan 03.
Article in English | MEDLINE | ID: mdl-27834973

ABSTRACT

X-ray absorption studies of the geometric and electronic structure of primarily heterogeneous Co, Ni, and Mn based water oxidation catalysts are reviewed. The X-ray absorption near edge and extended X-ray absorption fine structure studies of the metal K-edge, characterize the metal oxidation state, metal-oxygen bond distance, metal-metal distance, and degree of disorder of the catalysts. These properties guide the coordination environment of the transition metal oxide radical that localizes surface holes and is required to oxidize water. The catalysts are investigated both as-prepared, in their native state, and under reaction conditions, while transition metal oxide radicals are generated. The findings of many experiments are summarized in tables. The advantages of future X-ray experiments on water oxidation catalysts, which include the limited data available of the oxygen K-edge, metal L-edge, and resonant inelastic X-ray scattering, are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...