Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Hum Factors ; 62(6): 897-908, 2020 09.
Article in English | MEDLINE | ID: mdl-31408361

ABSTRACT

OBJECTIVE: Use Fitts' law to compare accuracy and throughput of three flight deck interfaces for navigation. BACKGROUND: Industry is proposing touch-based solutions to modernize the flight management system. However, research evaluating touchscreen effectiveness for navigation tasks in terms of accuracy and throughput on the flight deck is lacking. METHOD: An experiment was conducted with 14 participants in a flight simulator, aimed at creating Fitts' law accuracy and throughput models of three different flight deck interfaces used for navigation: the mode control panel, control display unit, and a touch-based navigation display. The former two constitute the conventional interface between the pilot and the flight management system, and the latter represents the industry-proposed solution for the future. RESULTS: Results indicate less accurate performance with the touchscreen navigation display compared to the other two interfaces and the throughput was lowest with the mode control panel. The control display unit was better in both accuracy and throughput, which is found to be largely attributed to the tactile and physical nature of the interface. CONCLUSION: Although performance in terms of accuracy and throughput was better with the control display unit, a question remains whether, when used during a more realistic navigation task, performance is still better compared to a touch-based interface. APPLICATION: This paper complements previous studies in the usage of aircraft touchscreens with new empirical insights into their accuracy and throughput, compared to conventional flight deck interfaces, using Fitts' law.


Subject(s)
Movement , Psychomotor Performance , Aircraft , Humans
2.
IEEE Trans Cybern ; 49(3): 768-780, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29993968

ABSTRACT

The human controller (HC) in manual control of a dynamical system often follows a visible and predictable reference path (target). The HC can adopt a control strategy combining closed-loop feedback and an open-loop feedforward response. The effects of the target signal waveform shape and the system dynamics on the human feedforward dynamics are still largely unknown, even for common, stable, vehicle-like dynamics. This paper studies the feedforward dynamics through computer model simulations and compares these to system identification results from human-in-the-loop experimental data. Two target waveform shapes are considered, constant velocity ramp segments and constant acceleration parabola segments. Furthermore, three representative vehicle-like system dynamics are considered: 1) a single integrator (SI); 2) a second-order system; and 3) a double integrator. The analyses show that the HC utilizes a combined feedforward/feedback control strategy for all dynamics with the parabola target, and for the SI and second-order system with the ramp target. The feedforward model parameters are, however, very different between the two target waveform shapes, illustrating the adaptability of the HC to task variables. Moreover, strong evidence of anticipatory control behavior in the HC is found for the parabola target signal. The HC anticipates the future course of the parabola target signal given extensive practice, reflected by negative feedforward time delay estimates.

3.
IEEE Trans Haptics ; 11(2): 255-266, 2018.
Article in English | MEDLINE | ID: mdl-29911982

ABSTRACT

In haptic shared control systems (HSC), a fixed strength of guidance force equates to a fixed level of control authority, which can be insufficient for complex tasks. An adaptable control authority based on operator input can allow the HSC system to better assist the operator under varied conditions. In this paper, we experimentally investigate () an adaptable authority HSC system that provides the operator with a direct way to adjust the control authority based on applied grip force. This system can serve as an intuitive 'manual override' function in case of HSC system malfunction. In a position tracking task, we explore two opposite approaches to adapt the control authority: increasing versus decreasing guidance strength with operator grip. These approaches were compared with unassisted control and two levels of fixed-level haptic guidance. Results show that the grip-adaptable approach allowed the operators to increase performance over unassisted control and over a weak guidance. At the same time, the approach substantially reduced the operator physical control effort required to cope with HSC system disturbances. Predictions based on the formalized model of the complete human-in-the-loop system corresponded to the experimental results, implying that such validated formalization can be used for model-based analysis and design of guidance systems.


Subject(s)
Adaptation, Physiological/physiology , Biomechanical Phenomena/physiology , Hand Strength/physiology , Psychomotor Performance/physiology , Touch Perception/physiology , User-Computer Interface , Adult , Female , Humans , Male
4.
Ergonomics ; 61(7): 966-987, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29319468

ABSTRACT

We conceptually replicated three highly cited experiments on speed adaptation, by measuring drivers' experienced risk (galvanic skin response; GSR), experienced task difficulty (self-reported task effort; SRTE) and safety margins (time-to-line-crossing; TLC) in a single experiment. The three measures were compared using a nonparametric index that captures the criteria of constancy during self-paced driving and sensitivity during forced-paced driving. In a driving simulator, 24 participants completed two forced-paced and one self-paced run. Each run held four different lane width conditions. Results showed that participants drove faster on wider lanes, thus confirming the expected speed adaptation. None of the three measures offered persuasive evidence for speed adaptation because they failed either the sensitivity criterion (GSR) or the constancy criterion (TLC, SRTE). An additional measure, steering reversal rate, outperformed the other three measures regarding sensitivity and constancy, prompting a further evaluation of the role of control activity in speed adaptation. Practitioner Summary: Results from a driving simulator experiment suggest that it is not experienced risk, experienced effort or safety margins that govern drivers' choice of speed. Rather, our findings suggest that steering reversal rate has an explanatory role in speed adaptation.


Subject(s)
Adaptation, Psychological/physiology , Automobile Driving/psychology , Choice Behavior/physiology , Acceleration , Adult , Computer Simulation , Female , Galvanic Skin Response , Humans , Male , Safety , Young Adult
5.
IEEE Trans Cybern ; 47(12): 4169-4181, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28113692

ABSTRACT

Biodynamic feedthrough (BDFT) refers to the feedthrough of vehicle accelerations through the human body, leading to involuntary control device inputs. BDFT impairs control performance in a large range of vehicles under various circumstances. Research shows that BDFT strongly depends on adaptations in the neuromuscular admittance dynamics of the human body. This paper proposes a model-based approach of BDFT mitigation that accounts for these neuromuscular adaptations. The method was tested, as proof-of-concept, in an experiment where participants inside a motion simulator controlled a simulated vehicle through a virtual tunnel. Through evaluating tracking performance and control effort with and without motion disturbance active and with and without cancellation active, the effectiveness of the cancellation was evaluated. Results show that the cancellation approach is successful: the detrimental effects of BDFT were largely removed.

6.
IEEE Trans Cybern ; 44(9): 1699-710, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25137695

ABSTRACT

Biodynamic feedthrough (BDFT) is a complex phenomenon, that has been studied for several decades. However, there is little consensus on how to approach the BDFT problem in terms of definitions, nomenclature, and mathematical descriptions. In this paper, the framework for BDFT analysis, as presented in Part I of this dual publication, is validated and applied. The goal of this framework is twofold. First of all, it provides some common ground between the seemingly large range of different approaches existing in BDFT literature. Secondly, the framework itself allows for gaining new insights into BDFT phenomena. Using recently obtained measurement data, parts of the framework that were not already addressed elsewhere, are validated. As an example of a practical application of the framework, it will be demonstrated how the effects of control device dynamics on BDFT can be understood and accurately predicted. Other ways of employing the framework are illustrated by interpreting the results of three selected studies from the literature using the BDFT framework. The presentation of the BDFT framework is divided into two parts. This paper, Part II, addresses the validation and application of the framework. Part I, which is also published in this journal issue, addresses the theoretical foundations of the framework. The work is presented in two separate papers to allow for a detailed discussion of both the framework's theoretical background and its validation.


Subject(s)
Ergonomics/methods , Ergonomics/standards , Feedback , Models, Biological , Research Design/standards , Signal Processing, Computer-Assisted/instrumentation , Acceleration , Aircraft , Biomechanical Phenomena , Ergonomics/instrumentation , Humans , Man-Machine Systems , Reproducibility of Results
7.
IEEE Trans Cybern ; 44(9): 1686-98, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24816627

ABSTRACT

Biodynamic feedthrough (BDFT) is a complex phenomenon, which has been studied for several decades. However, there is little consensus on how to approach the BDFT problem in terms of definitions, nomenclature, and mathematical descriptions. In this paper, a framework for biodynamic feedthrough analysis is presented. The goal of this framework is two-fold. First, it provides some common ground between the seemingly large range of different approaches existing in the BDFT literature. Second, the framework itself allows for gaining new insights into BDFT phenomena. It will be shown how relevant signals can be obtained from measurement, how different BDFT dynamics can be derived from them, and how these different dynamics are related. Using the framework, BDFT can be dissected into several dynamical relationships, each relevant in understanding BDFT phenomena in more detail. The presentation of the BDFT framework is divided into two parts. This paper, Part I, addresses the theoretical foundations of the framework. Part II, which is also published in this issue, addresses the validation of the framework. The work is presented in two separate papers to allow for a detailed discussion of both the framework's theoretical background and its validation.


Subject(s)
Ergonomics/instrumentation , Feedback , Models, Biological , Signal Processing, Computer-Assisted/instrumentation , Acceleration , Aircraft , Biomechanical Phenomena , Humans , Man-Machine Systems , Research Design
8.
IEEE Trans Cybern ; 44(7): 1141-54, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24043420

ABSTRACT

A biodynamic feedthrough (BDFT) model is proposed that describes how vehicle accelerations feed through the human body, causing involuntary limb motions and so involuntary control inputs. BDFT dynamics strongly depend on limb dynamics, which can vary between persons (between-subject variability), but also within one person over time, e.g., due to the control task performed (within-subject variability). The proposed BDFT model is based on physical neuromuscular principles and is derived from an established admittance model-describing limb dynamics-which was extended to include control device dynamics and account for acceleration effects. The resulting BDFT model serves primarily the purpose of increasing the understanding of the relationship between neuromuscular admittance and biodynamic feedthrough. An added advantage of the proposed model is that its parameters can be estimated using a two-stage approach, making the parameter estimation more robust, as the procedure is largely based on the well documented procedure required for the admittance model. To estimate the parameter values of the BDFT model, data are used from an experiment in which both neuromuscular admittance and biodynamic feedthrough are measured. The quality of the BDFT model is evaluated in the frequency and time domain. Results provide strong evidence that the BDFT model and the proposed method of parameter estimation put forward in this paper allows for accurate BDFT modeling across different subjects (accounting for between-subject variability) and across control tasks (accounting for within-subject variability).


Subject(s)
Computer Simulation , Feedback , Models, Biological , Adult , Humans , Muscles/physiology , Signal Processing, Computer-Assisted , Young Adult
9.
IEEE Trans Cybern ; 44(7): 1025-38, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24013832

ABSTRACT

Biodynamic feedthrough (BDFT) occurs when vehicle accelerations feed through the human body and cause involuntary control inputs. This paper proposes a model to quantitatively predict this effect in rotorcraft. This mathematical BDFT model aims to fill the gap between the currently existing black box BDFT models and physical BDFT models. The model structure was systematically constructed using asymptote modeling, a procedure described in detail in this paper. The resulting model can easily be implemented in many typical rotorcraft BDFT studies, using the provided model parameters. The model's performance was validated in both the frequency and time domain. Furthermore, it was compared with several recent BDFT models. The results show that the proposed mathematical model performs better than typical black box models and is easier to parameterize and implement than a recent physical model.


Subject(s)
Aircraft , Feedback , Models, Biological , Vibration , Humans , Reproducibility of Results
10.
IEEE Trans Cybern ; 43(6): 1936-49, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23757583

ABSTRACT

In the manual control of a dynamic system, the human controller (HC) often follows a visible and predictable reference path. Compared with a purely feedback control strategy, performance can be improved by making use of this knowledge of the reference. The operator could effectively introduce feedforward control in conjunction with a feedback path to compensate for errors, as hypothesized in literature. However, feedforward behavior has never been identified from experimental data, nor have the hypothesized models been validated. This paper investigates human control behavior in pursuit tracking of a predictable reference signal while being perturbed by a quasi-random multisine disturbance signal. An experiment was done in which the relative strength of the target and disturbance signals were systematically varied. The anticipated changes in control behavior were studied by means of an ARX model analysis and by fitting three parametric HC models: two different feedback models and a combined feedforward and feedback model. The ARX analysis shows that the experiment participants employed control action on both the error and the target signal. The control action on the target was similar to the inverse of the system dynamics. Model fits show that this behavior can be modeled best by the combined feedforward and feedback model.


Subject(s)
Algorithms , Biofeedback, Psychology/physiology , Feedback, Physiological/physiology , Models, Biological , Movement/physiology , Psychomotor Performance/physiology , Adult , Computer Simulation , Female , Humans , Male , Middle Aged , Young Adult
11.
IEEE Trans Cybern ; 43(2): 544-56, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22987529

ABSTRACT

In this paper, we investigate the effects of visual and motion stimuli on the manual control of one's direction of self-motion. In a flight simulator, subjects conducted an active target-following disturbance-rejection task, using a compensatory display. Simulating a vehicular control task, the direction of vehicular motion was shown on the outside visual display in two ways: an explicit presentation using a symbol and an implicit presentation, namely, through the focus of radial outflow that emerges from optic flow. In addition, the effects of the relative strength of congruent vestibular motion cues were investigated. The dynamic properties of human visual and vestibular motion perception paths were modeled using a control-theoretical approach. As expected, improved tracking performance was found for the configurations that explicitly showed the direction of self-motion. The human visual time delay increased with approximately 150 ms for the optic flow conditions, relative to explicit presentations. Vestibular motion, providing higher order information on the direction of self-motion, allowed subjects to partially compensate for this visual perception delay, improving performance. Parameter estimates of the operator control model show that, with vestibular motion, the visual feedback becomes stronger, indicating that operators are more confident to act on optic flow information when congruent vestibular motion cues are present.


Subject(s)
Models, Neurological , Motion Perception/physiology , Optic Flow/physiology , Vestibule, Labyrinth/physiology , Adult , Cybernetics , Humans , Male , Middle Aged , Psychophysics , Young Adult
12.
IEEE Trans Cybern ; 43(1): 129-42, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22752141

ABSTRACT

When performing a manual control task, vehicle accelerations can cause involuntary limb motions, which can result in unintentional control inputs. This phenomenon is called biodynamic feedthrough (BDFT). In the past decades, many studies into BDFT have been performed, but its fundamentals are still only poorly understood. What has become clear, though, is that BDFT is a highly complex process, and its occurrence is influenced by many different factors. A particularly challenging topic in BDFT research is the role of the human operator, which is not only a very complex but also a highly adaptive system. In literature, two different ways of measuring and analyzing BDFT are reported. One considers the transfer of accelerations to involuntary forces applied to the control device (CD); the other considers the transfer of accelerations to involuntary CD deflections or positions. The goal of this paper is to describe an approach to unify these two methods. It will be shown how the results of the two methods relate and how this knowledge may aid in understanding BDFT better as a whole. The approach presented is based on the notion that BDFT dynamics can be described by the combination of two transfer dynamics: 1) the transfer dynamics from body accelerations to involuntary forces and 2) the transfer dynamics from forces to CD deflections. The approach was validated using experimental results.


Subject(s)
Aircraft , Feedback , Models, Theoretical , Signal Processing, Computer-Assisted , Acceleration , Adult , Humans , Male , Motion , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...