Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Astrophys J ; 532(2): L121-L124, 2000 Apr 01.
Article in English | MEDLINE | ID: mdl-10715239

ABSTRACT

We present statistics of SGR 1806-20 bursts, combining 290 events detected with the Rossi X-Ray Timing Explorer/Proportional Counter Array, 111 events detected with the Burst and Transient Source Experiment, and 134 events detected with the International Cometary Explorer. We find that the fluence distribution of bursts observed with each instrument are well described by power laws with indices 1.43, 1.76, and 1.67, respectively. The distribution of time intervals between successive bursts from SGR 1806-20 is described by a lognormal function with a peak at 103 s. There is no correlation between the burst intensity and either the waiting times until the next burst or the time elapsed since the previous burst. In all these statistical properties, SGR 1806-20 bursts resemble a self-organized critical system, similar to earthquakes and solar flares. Our results thus support the hypothesis that the energy source for soft gamma repeater bursts is crustquakes due to the evolving, strong magnetic field of the neutron star, rather than any accretion or nuclear power.

2.
Astrophys J ; 528(1): L21-L23, 2000 Jan 01.
Article in English | MEDLINE | ID: mdl-10587486

ABSTRACT

We present a 2-10 keV ASCA observation of the field around the soft gamma repeater SGR 1627-41. A quiescent X-ray source, whose position is consistent both with that of a recently discovered BeppoSAX X-ray source and with the Interplanetary Network localization for this soft gamma repeater, was detected in this observation. In 2-10 keV X-rays, the spectrum of the X-ray source may be fit equally well by a power-law, blackbody, or bremsstrahlung function, with unabsorbed flux approximately 5x10-12 ergs cm-2 s-1. We do not confirm a continuation of a fading trend in the flux, and we find no evidence for periodicity, both of which were noted in the earlier BeppoSAX observations.

3.
Astrophys J ; 527(1): L47-L50, 1999 Dec 10.
Article in English | MEDLINE | ID: mdl-10566996

ABSTRACT

We present evidence for burst emission from SGR 1900+14 with a power-law high-energy spectrum extending beyond 500 keV. Unlike previous detections of high-energy photons during bursts from soft gamma repeaters (SGRs), these emissions are not associated with extraordinarily bright flares. Not only is the emission hard, but the spectra are better fitted by D. Band's gamma-ray burst (GRB) function rather than by the traditional optically thin thermal bremsstrahlung model. We find that the spectral evolution within these hard events obeys a hardness/intensity anticorrelation. Temporally, these events are distinct from typical SGR burst emissions in that they are longer ( approximately 1 s) and have relatively smooth profiles. Despite a difference in peak luminosity of greater, similar1011 between these bursts from SGR 1900+14 and cosmological GRBs, there are striking temporal and spectral similarities between the two kinds of bursts, aside from spectral evolution. We outline an interpretation of these events in the context of the magnetar model.

4.
Astrophys J ; 526(2): L93-L96, 1999 Dec 01.
Article in English | MEDLINE | ID: mdl-10550286

ABSTRACT

We study the statistics of soft gamma repeater (SGR) bursts using a database of 187 events detected with BATSE and 837 events detected with the Rossi X-Ray Timing Explorer Proportional Counter Array; all events are from SGR 1900+14 during its 1998-1999 active phase. We find that the fluence or energy distribution of bursts is consistent with a power law of index 1.66, over 4 orders of magnitude. This scale-free distribution resembles the Gutenberg-Richter law for earthquakes and gives evidence for self-organized criticality in SGRs. The distribution of time intervals between successive bursts from SGR 1900+14 is consistent with a lognormal distribution. There is no correlation between burst intensity and the waiting times till the next burst, but there is some evidence for a correlation between burst intensity and the time elapsed since the previous burst. We also find a correlation between the duration and the energy of the bursts, but with significant scatter. In all these statistical properties, SGR bursts resemble earthquakes and solar flares more closely than they resemble any known accretion-powered or nuclear-powered phenomena. Thus, our analysis lends support to the hypothesis that the energy source for SGR bursts is internal to the neutron star and plausibly magnetic.

SELECTION OF CITATIONS
SEARCH DETAIL
...