Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37873121

ABSTRACT

Polycomb Repressive Complex 2 (PRC2) is an epigenetic regulator that trimethylates lysine 27 of histone 3 (H3K27me3) and is essential for embryonic development and cellular differentiation. H3K27me3 is associated with transcriptionally repressed chromatin and is established when PRC2 is allosterically activated upon methyl-lysine binding by the regulatory subunit EED. Automethylation of the catalytic subunit EZH2 stimulates its activity by an unknown mechanism. Here, we show that PRC2 forms a dimer on chromatin in which an inactive, automethylated PRC2 protomer is the allosteric activator of a second PRC2 that is poised to methylate H3 of a substrate nucleosome. Functional assays support our model of allosteric trans-autoactivation via EED, suggesting a novel mechanism mediating context-dependent activation of PRC2. Our work showcases the molecular mechanism of auto-modification coupled dimerization in the regulation of chromatin modifying complexes.

2.
J Exp Med ; 214(6): 1725-1736, 2017 06 05.
Article in English | MEDLINE | ID: mdl-28465465

ABSTRACT

NLRP3 is a cytosolic pattern recognition receptor that senses microbes and endogenous danger signals. Upon activation, NLRP3 forms an inflammasome with the adapter ASC, resulting in caspase-1 activation, release of proinflammatory cytokines and cell death. How NLRP3 activation is regulated by transcriptional and posttranslational mechanisms to prevent aberrant activation remains incompletely understood. Here, we identify three conserved phosphorylation sites in NLRP3 and demonstrate that NLRP3 activation is controlled by phosphorylation of its pyrin domain (PYD). Phosphomimetic residues in NLRP3 PYD abrogate inflammasome activation and structural modeling indicates that phosphorylation of the PYD regulates charge-charge interaction between two PYDs that are essential for NLRP3 activation. Phosphatase 2A (PP2A) inhibition or knock-down drastically reduces NLRP3 activation, showing that PP2A can license inflammasome assembly via dephosphorylating NLRP3 PYD. These results propose that the balance between kinases and phosphatases acting on the NLRP3 PYD is critical for NLRP3 activation.


Subject(s)
Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/chemistry , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyrin/chemistry , Amino Acid Sequence , Animals , HEK293 Cells , Humans , Mice , Models, Biological , Models, Molecular , Phosphorylation , Phosphoserine/metabolism , Protein Binding , Protein Domains , Protein Phosphatase 2/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...