Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Sci Rep ; 12(1): 802, 2022 01 17.
Article in English | MEDLINE | ID: mdl-35039564

ABSTRACT

Since the discovery of the breast cancer susceptibility genes, BRCA1 and BRCA2, various other genes conferring an increased risk for breast cancer have been identified. Studies to evaluate sequence variants in cancer predisposition genes among women of African ancestry are limited and mostly focused on BRCA1 and BRCA2. To characterize germline sequence variants in cancer susceptibility genes, we analysed a cohort of 165 South African women of self-identified African ancestry diagnosed with breast cancer, who were unselected for family history of cancer. With the exception of four cases, all others were previously investigated for BRCA1 and BRCA2 deleterious variants, and were negative for pathogenic variants. We utilized the Illumina TruSight cancer panel for targeted sequencing of 94 cancer susceptibility genes. A total of 3.6% of patients carried a pathogenic/likely pathogenic variant in a known breast cancer susceptibility gene: 1.2% in BRCA1, 0.6% in each of BRCA2, ATM, CHEK2 and PALB, none of whom had any family history of breast cancer. The mean age of patients who carried deleterious variant in BRCA1/BRCA2 was 39 years and 8 months compared to 47 years and 3 months among women who carried a deleterious variant in other breast cancer susceptibility genes.


Subject(s)
Breast Neoplasms/genetics , Genetic Association Studies , Genetic Predisposition to Disease/genetics , Germ-Line Mutation/genetics , Adult , Age Distribution , BRCA2 Protein/genetics , Black People/genetics , Cohort Studies , Female , Humans , Middle Aged , Risk , South Africa , Ubiquitin-Protein Ligases/genetics , Young Adult
2.
Int J Gynaecol Obstet ; 155(3): 455-465, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34499750

ABSTRACT

OBJECTIVE: To describe risk factors and outcomes of pregnant women infected with SARS-CoV-2 admitted to South African healthcare facilities. METHODS: A population-based cohort study was conducted utilizing an amended International Obstetric Surveillance System protocol. Data on pregnant women with SARS-CoV-2 infection, hospitalized between April 14, 2020, and November 24, 2020, were analyzed. RESULTS: A total of 36 hospitals submitted data on 673 infected hospitalized pregnant women; 217 (32.2%) were admitted for COVID-19 illness and 456 for other indications. There were 39 deaths with a case fatality rate of 6.3%: 32 (14.7%) deaths occurred in women admitted for COVID-19 illness compared to 7 (1.8%) in women admitted for other indications. Of the women, 106 (15.9%) required critical care. Maternal tuberculosis, but not HIV co-infection or other co-morbidities, was associated with admission for COVID-19 illness. Rates of cesarean delivery did not differ significantly between women admitted for COVID-19 and those admitted for other indications. There were 179 (35.4%) preterm births, 25 (4.7%) stillbirths, 12 (2.3%) neonatal deaths, and 162 (30.8%) neonatal admissions. Neonatal outcomes did not differ significantly from those of infected women admitted for other indications. CONCLUSION: The maternal mortality rate was high among women admitted with SARS-CoV-2 infection and higher in women admitted primarily for COVID-19 illness with tuberculosis being the only co-morbidity associated with admission.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Premature Birth , Cohort Studies , Female , Humans , Infant, Newborn , Infectious Disease Transmission, Vertical , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Pregnancy Outcome/epidemiology , Pregnant Women , SARS-CoV-2 , South Africa/epidemiology
3.
Hum Mutat ; 40(10): 1781-1796, 2019 10.
Article in English | MEDLINE | ID: mdl-31112363

ABSTRACT

BRCA1 and BRCA2 (BRCA1/2) pathogenic sequence variants (PSVs) confer elevated risks of multiple cancers. However, most BRCA1/2 PSVs reports focus on European ancestry individuals. Knowledge of the PSV distribution in African descent individuals is poorly understood. We undertook a systematic review of the published literature and publicly available databases reporting BRCA1/2 PSVs also accessed the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) database to identify African or African descent individuals. Using these data, we inferred which of the BRCA PSVs were likely to be of African continental origin. Of the 43,817 BRCA1/2 PSV carriers in the CIMBA database, 469 (1%) were of African descent. Additional African descent individuals were identified in public databases (n = 291) and the literature (n = 601). We identified 164 unique BRCA1 and 173 unique BRCA2 PSVs in individuals of African ancestry. Of these, 83 BRCA1 and 91 BRCA2 PSVs are of likely or possible African origin. We observed numerous differences in the distribution of PSV type and function in African origin versus non-African origin PSVs. Research in populations of African ancestry with BRCA1/2 PSVs is needed to provide the information needed for clinical management and decision-making in African descent individuals worldwide.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Black People/genetics , Genetic Predisposition to Disease , Genetic Variation , Alleles , Female , Genetic Association Studies , Humans , Mutation , Population Surveillance
4.
Hum Mutat ; 39(5): 593-620, 2018 05.
Article in English | MEDLINE | ID: mdl-29446198

ABSTRACT

The prevalence and spectrum of germline mutations in BRCA1 and BRCA2 have been reported in single populations, with the majority of reports focused on White in Europe and North America. The Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) has assembled data on 18,435 families with BRCA1 mutations and 11,351 families with BRCA2 mutations ascertained from 69 centers in 49 countries on six continents. This study comprehensively describes the characteristics of the 1,650 unique BRCA1 and 1,731 unique BRCA2 deleterious (disease-associated) mutations identified in the CIMBA database. We observed substantial variation in mutation type and frequency by geographical region and race/ethnicity. In addition to known founder mutations, mutations of relatively high frequency were identified in specific racial/ethnic or geographic groups that may reflect founder mutations and which could be used in targeted (panel) first pass genotyping for specific populations. Knowledge of the population-specific mutational spectrum in BRCA1 and BRCA2 could inform efficient strategies for genetic testing and may justify a more broad-based oncogenetic testing in some populations.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Internationality , Mutation/genetics , Databases, Genetic , Family , Geography , Humans
5.
J Med Genet ; 53(12): 800-811, 2016 12.
Article in English | MEDLINE | ID: mdl-27595995

ABSTRACT

BACKGROUND: The rarity of mutations in PALB2, CHEK2 and ATM make it difficult to estimate precisely associated cancer risks. Population-based family studies have provided evidence that at least some of these mutations are associated with breast cancer risk as high as those associated with rare BRCA2 mutations. We aimed to estimate the relative risks associated with specific rare variants in PALB2, CHEK2 and ATM via a multicentre case-control study. METHODS: We genotyped 10 rare mutations using the custom iCOGS array: PALB2 c.1592delT, c.2816T>G and c.3113G>A, CHEK2 c.349A>G, c.538C>T, c.715G>A, c.1036C>T, c.1312G>T, and c.1343T>G and ATM c.7271T>G. We assessed associations with breast cancer risk (42 671 cases and 42 164 controls), as well as prostate (22 301 cases and 22 320 controls) and ovarian (14 542 cases and 23 491 controls) cancer risk, for each variant. RESULTS: For European women, strong evidence of association with breast cancer risk was observed for PALB2 c.1592delT OR 3.44 (95% CI 1.39 to 8.52, p=7.1×10-5), PALB2 c.3113G>A OR 4.21 (95% CI 1.84 to 9.60, p=6.9×10-8) and ATM c.7271T>G OR 11.0 (95% CI 1.42 to 85.7, p=0.0012). We also found evidence of association with breast cancer risk for three variants in CHEK2, c.349A>G OR 2.26 (95% CI 1.29 to 3.95), c.1036C>T OR 5.06 (95% CI 1.09 to 23.5) and c.538C>T OR 1.33 (95% CI 1.05 to 1.67) (p≤0.017). Evidence for prostate cancer risk was observed for CHEK2 c.1343T>G OR 3.03 (95% CI 1.53 to 6.03, p=0.0006) for African men and CHEK2 c.1312G>T OR 2.21 (95% CI 1.06 to 4.63, p=0.030) for European men. No evidence of association with ovarian cancer was found for any of these variants. CONCLUSIONS: This report adds to accumulating evidence that at least some variants in these genes are associated with an increased risk of breast cancer that is clinically important.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Breast Neoplasms/metabolism , Checkpoint Kinase 2/genetics , Genetic Predisposition to Disease , Mutation , Nuclear Proteins/genetics , Prostatic Neoplasms/metabolism , Tumor Suppressor Proteins/genetics , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Case-Control Studies , Fanconi Anemia Complementation Group N Protein , Female , Genetic Association Studies , Humans , Male , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/genetics , Risk
6.
J Natl Cancer Inst ; 108(2)2016 Feb.
Article in English | MEDLINE | ID: mdl-26586665

ABSTRACT

BACKGROUND: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. METHODS: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. RESULTS: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10(-) (6)) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10(-3)). These associations were stronger for serous ovarian cancer and for estrogen receptor-negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10(-5) and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10(-5), respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. CONCLUSIONS: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations.


Subject(s)
BRCA2 Protein/genetics , Breast Neoplasms/genetics , Codon, Terminator , Ovarian Neoplasms/genetics , Polymorphism, Single Nucleotide , Prostatic Neoplasms/genetics , Adult , Aged , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Logistic Models , Lysine/genetics , Male , Middle Aged , Neoplasm Invasiveness , Odds Ratio , Ovarian Neoplasms/pathology , Risk Assessment , Risk Factors
7.
Biomed Res Int ; 2015: 608682, 2015.
Article in English | MEDLINE | ID: mdl-26351637

ABSTRACT

Two potassium (K(+))-uptake systems, Trk and Kdp, are operative in Mycobacterium tuberculosis (Mtb), but the environmental factors triggering their expression have not been determined. The current study has evaluated the expression of these genes in the Mtb wild-type and a trk-gene knockout strain at various stages of logarithmic growth in relation to extracellular K(+) concentrations and pH. In both strains, mRNA levels of the K(+)-uptake encoding genes were relatively low compared to those of the housekeeping gene, sigA, at the early- and mid-log phases, increasing during late-log. Increased gene expression coincided with decreased K(+) uptake in the context of a drop in extracellular pH and sustained high extracellular K(+) concentrations. In an additional series of experiments, the pH of the growth medium was manipulated by the addition of 1N HCl/NaOH. Decreasing the pH resulted in reductions in both membrane potential and K(+) uptake in the setting of significant induction of genes encoding both K(+) transporters. These observations are consistent with induction of the genes encoding the active K(+) transporters of Mtb as a strategy to compensate for loss of membrane potential-driven uptake of K(+) at low extracellular pH. Induction of these genes may promote survival in the acidic environments of the intracellular vacuole and granuloma.


Subject(s)
Bacterial Proteins/genetics , Cation Transport Proteins/genetics , Gene Expression Regulation, Bacterial/genetics , Mycobacterium tuberculosis/genetics , Potassium/metabolism , Bacterial Proteins/metabolism , Biological Transport/genetics , Hydrogen-Ion Concentration , Ion Transport/genetics , RNA, Messenger/genetics
8.
Breast Cancer Res ; 17: 61, 2015 Apr 25.
Article in English | MEDLINE | ID: mdl-25925750

ABSTRACT

INTRODUCTION: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. METHODS: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. RESULTS: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. CONCLUSIONS: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.


Subject(s)
Breast Neoplasms/genetics , Genes, BRCA2 , Genes, Mitochondrial , Heterozygote , Mutation , BRCA1 Protein/genetics , Female , Genetic Predisposition to Disease , Haplotypes , Humans , Phylogeny , Risk
9.
Nat Genet ; 47(2): 164-71, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25581431

ABSTRACT

Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Neoplasms, Glandular and Epithelial/genetics , Ovarian Neoplasms/genetics , Polymorphism, Single Nucleotide , Adolescent , Adult , Alleles , Carcinoma, Ovarian Epithelial , Female , Genes, Reporter , Genotype , Heterozygote , Humans , Mutation , Quantitative Trait Loci , Risk , Young Adult
10.
Cancer Epidemiol Biomarkers Prev ; 24(1): 308-16, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25336561

ABSTRACT

BACKGROUND: BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and nongenetic modifying factors. In this study, we evaluated the putative role of variants in many candidate modifier genes. METHODS: Genotyping data from 15,252 BRCA1 and 8,211 BRCA2 mutation carriers, for known variants (n = 3,248) located within or around 445 candidate genes, were available through the iCOGS custom-designed array. Breast and ovarian cancer association analysis was performed within a retrospective cohort approach. RESULTS: The observed P values of association ranged between 0.005 and 1.000. None of the variants was significantly associated with breast or ovarian cancer risk in either BRCA1 or BRCA2 mutation carriers, after multiple testing adjustments. CONCLUSION: There is little evidence that any of the evaluated candidate variants act as modifiers of breast and/or ovarian cancer risk in BRCA1 or BRCA2 mutation carriers. IMPACT: Genome-wide association studies have been more successful at identifying genetic modifiers of BRCA1/2 penetrance than candidate gene studies.


Subject(s)
Breast Neoplasms/genetics , Genes, BRCA1/physiology , Genes, BRCA2/physiology , Ovarian Neoplasms/genetics , Adult , Cohort Studies , Female , Humans , Mutation , Polymorphism, Single Nucleotide , Retrospective Studies , Young Adult
11.
PLoS Genet ; 10(4): e1004256, 2014 04.
Article in English | MEDLINE | ID: mdl-24698998

ABSTRACT

Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03-1.16), p = 2.7 × 10(-3)) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03-1.21, p = 4.8 × 10(-3)). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , DNA Glycosylases/genetics , DNA Repair/genetics , Ovarian Neoplasms/genetics , Polymorphism, Single Nucleotide/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Female , Genetic Predisposition to Disease , Genotype , Humans , Middle Aged , Risk
12.
Breast Cancer Res ; 16(6): 3416, 2014 Dec 31.
Article in English | MEDLINE | ID: mdl-25919761

ABSTRACT

INTRODUCTION: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility, and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 mutation carriers and the general population for several loci, no study has comprehensively evaluated the associations of all known BC susceptibility alleles with risk of BC subtypes in BRCA1 and BRCA2 carriers. METHODS: We used data from 15,252 BRCA1 and 8,211 BRCA2 carriers to analyze the associations between approximately 200,000 genetic variants on the iCOGS array and risk of BC subtypes defined by estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and triple-negative- (TN) status; morphologic subtypes; histological grade; and nodal involvement. RESULTS: The estimated BC hazard ratios (HRs) for the 74 known BC alleles in BRCA1 carriers exhibited moderate correlations with the corresponding odds ratios from the general population. However, their associations with ER-positive BC in BRCA1 carriers were more consistent with the ER-positive associations in the general population (intraclass correlation (ICC) = 0.61, 95% confidence interval (CI): 0.45 to 0.74), and the same was true when considering ER-negative associations in both groups (ICC = 0.59, 95% CI: 0.42 to 0.72). Similarly, there was strong correlation between the ER-positive associations for BRCA1 and BRCA2 carriers (ICC = 0.67, 95% CI: 0.52 to 0.78), whereas ER-positive associations in any one of the groups were generally inconsistent with ER-negative associations in any of the others. After stratifying by ER status in mutation carriers, additional significant associations were observed. Several previously unreported variants exhibited associations at P <10(-6) in the analyses by PR status, HER2 status, TN phenotype, morphologic subtypes, histological grade and nodal involvement. CONCLUSIONS: Differences in associations of common BC susceptibility alleles between BRCA1 and BRCA2 carriers and the general population are explained to a large extent by differences in the prevalence of ER-positive and ER-negative tumors. Estimates of the risks associated with these variants based on population-based studies are likely to be applicable to mutation carriers after taking ER status into account, which has implications for risk prediction.


Subject(s)
Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Carcinoma, Lobular/genetics , Genes, BRCA1 , Genes, BRCA2 , Adult , Aged , Alleles , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma/genetics , Carcinoma/metabolism , Carcinoma/pathology , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Ductal, Breast/pathology , Carcinoma, Lobular/metabolism , Carcinoma, Lobular/pathology , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Middle Aged , Neoplasm Grading , Neoplasm Staging , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism
13.
PLoS Genet ; 9(3): e1003173, 2013.
Article in English | MEDLINE | ID: mdl-23544012

ABSTRACT

Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS). To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH) identified SNPs that have stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HR = 0.85, 95% CI 0.80-0.90, P = 3.9 × 10(-8)). This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer.


Subject(s)
BRCA2 Protein/genetics , Breast Neoplasms/genetics , Chromosomes, Human, Pair 6/genetics , Genome-Wide Association Study , Adult , Aged , Alleles , BRCA1 Protein/genetics , Breast Neoplasms/pathology , Female , Genetic Predisposition to Disease , Genotype , Heterozygote , Humans , Middle Aged , Mutation , Polymorphism, Single Nucleotide , Risk Factors
14.
PLoS Genet ; 9(3): e1003212, 2013.
Article in English | MEDLINE | ID: mdl-23544013

ABSTRACT

BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 × 10(-8), HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4 × 10(-8), HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4 × 10(-8), HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10(-4)). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%-50% compared to 81%-100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/genetics , Genome-Wide Association Study , Ovarian Neoplasms/genetics , BRCA2 Protein/genetics , Breast Neoplasms/pathology , Female , Genetic Predisposition to Disease , Genotype , Heterozygote , Humans , Middle Aged , Mutation , Ovarian Neoplasms/pathology , Polymorphism, Single Nucleotide , Prognosis , Risk Factors
15.
J Med Genet ; 49(8): 525-32, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22889855

ABSTRACT

BACKGROUND: Clinical classification of rare sequence changes identified in the breast cancer susceptibility genes BRCA1 and BRCA2 is essential for appropriate genetic counselling of individuals carrying these variants. We previously showed that variant BRCA1 c.5096G>A p.Arg1699Gln in the BRCA1 transcriptional transactivation domain demonstrated equivocal results from a series of functional assays, and proposed that this variant may confer low to moderate risk of cancer. METHODS: Measures of genetic risk (report of family history, segregation) were assessed for 68 BRCA1 c.5096G>A p.Arg1699Gln (R1699Q) families recruited through family cancer clinics, comparing results with 34 families carrying the previously classified pathogenic BRCA1 c.5095C>T p.Arg1699Trp (R1699W) mutation at the same residue, and to 243 breast cancer families with no BRCA1 pathogenic mutation (BRCA-X). RESULTS: Comparison of BRCA1 carrier prediction scores of probands using the BOADICEA risk prediction tool revealed that BRCA1 c.5096G>A p.Arg1699Gln variant carriers had family histories that were less 'BRCA1-like' than BRCA1 c.5095C>T p.Arg1699Trp mutation carriers (p<0.00001), but more 'BRCA1-like' than BRCA-X families (p=0.0004). Further, modified segregation analysis of the subset of 30 families with additional genotyping showed that BRCA1 c.5096G >A p.Arg1699Gln had reduced penetrance compared with the average truncating BRCA1 mutation penetrance (p=0.0002), with estimated cumulative risks to age 70 of breast or ovarian cancer of 24%. CONCLUSIONS: Our results provide substantial evidence that the BRCA1 c.5096G>A p.Arg1699Gln (R1699Q) variant, demonstrating ambiguous functional deficiency across multiple assays, is associated with intermediate risk of breast and ovarian cancer, highlighting challenges for risk modelling and clinical management of patients of this and other potential moderate-risk variants.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/genetics , Mutation , Ovarian Neoplasms/genetics , Aged , Female , Genetic Predisposition to Disease , Genetic Testing , Genotyping Techniques , HEK293 Cells , Humans , Likelihood Functions , Pedigree , Penetrance , Predictive Value of Tests , Risk Factors , Transcriptional Activation
16.
Breast Cancer Res Treat ; 125(2): 325-49, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20232141

ABSTRACT

Germline mutations in BRCA1 and BRCA2 increase the risk for developing breast and ovarian cancer. Previously, the techniques available allowed only for the identification of small genomic alterations, but the dawn of new technology now allows for the rapid detection of large genomic rearrangements (LGRs). LGRs in BRCA1 are responsible for between 0 and 27% of all BRCA1 disease-causing mutations identified in numerous populations. Such alterations are far less common in the BRCA2 gene. To determine the impact of BRCA1 and BRCA2 LGRs in South Africa, 52 hereditary breast and/or ovarian South African families (36 were Afrikaners) were screened for BRCA1 and BRCA2 LGRs using multiplex ligation-dependent probe amplification. These patients were previously shown to be BRCA1 and BRCA2 small mutation negative. One LGR was detected in BRCA1 in a South African family with Greek ancestry. This is a novel deletion of both exons 23 and 24 (NG_005905.2:g.169527_180579del). This first study of BRCA rearrangements in South Africa reveals that LGRs comprise ~3% of identified BRCA1 mutations, a low rate in comparison to other populations. In addition, we have reviewed all 98 previously characterized BRCA1/2 LGRs and re-named them according to the recommended HGVS nomenclature, using the recently released RefSeqGene records, NG_005905.2 and NG_012772.1 for BRCA1 and BRCA2. A standardized resource is now provided which will assist researchers in determining whether their LGRs are novel. Furthermore, we have clarified some of the previously misunderstood rules of nomenclature, which will make uniform reporting of BRCA1/2 easier in the future.


Subject(s)
Breast Neoplasms/genetics , Gene Rearrangement , Genes, BRCA1 , Genes, BRCA2 , Ovarian Neoplasms/genetics , Sequence Deletion , Base Sequence , Breast Neoplasms, Male/genetics , Female , Genetic Testing , Germ-Line Mutation , Humans , Male , Molecular Sequence Data , Mutation , South Africa , Terminology as Topic
17.
Proc Natl Acad Sci U S A ; 106(39): 16746-51, 2009 Sep 29.
Article in English | MEDLINE | ID: mdl-19805367

ABSTRACT

To elucidate the genetic architecture of familial schizophrenia we combine linkage analysis with studies of fine-level chromosomal variation in families recruited from the Afrikaner population in South Africa. We demonstrate that individually rare inherited copy number variants (CNVs) are more frequent in cases with familial schizophrenia as compared to unaffected controls and affect almost exclusively genic regions. Interestingly, we find that while the prevalence of rare structural variants is similar in familial and sporadic cases, the type of variants is markedly different. In addition, using a high-density linkage scan with a panel of nearly 2,000 markers, we identify a region on chromosome 13q34 that shows genome-wide significant linkage to schizophrenia and show that in the families not linked to this locus, there is evidence for linkage to chromosome 1p36. No causative CNVs were identified in either locus. Overall, our results from approaches designed to detect risk variants with relatively low frequency and high penetrance in a well-defined and relatively homogeneous population, provide strong empirical evidence supporting the notion that multiple genetic variants, including individually rare ones, that affect many different genes contribute to the genetic risk of familial schizophrenia. They also highlight differences in the genetic architecture of the familial and sporadic forms of the disease.


Subject(s)
Gene Dosage , Genetic Linkage , Genetic Variation , Schizophrenia/genetics , Cohort Studies , Genome, Human , Humans , South Africa
18.
Fam Cancer ; 8(4): 347-53, 2009.
Article in English | MEDLINE | ID: mdl-19333784

ABSTRACT

PALB2 (partner and localizer of BRCA2) is a recently identified breast cancer susceptibility gene, in which mutations confer doubling of breast cancer risk with moderate to low penetrance. Recent studies in various populations report that deleterious mutations in this gene account for approximately 1% of familial or early-onset breast cancer cases. This study aimed to determine the involvement of PALB2 mutations in a cohort of 48 young (29-45 years) South African breast cancer patients unselected for family history of breast cancer. The complete coding region and intron-exon boundaries of PALB2 were analyzed. A novel truncating mutation, c.697delG (V233fs) was identified in one patient. A missense variant (E211G), identified in another patient, appears to be segregating with the disease, but in silico analysis using SIFT, PolyPhen and A-GVGD, indicates that this variant is nonpathogenic. In addition, four other missense, one synonymous and three intronic variants were detected, all of which appear polymorphic. This represents the second study to analyze the role of PALB2 in early-onset breast cancer patients unselected for family history. The first study, of a Chinese population, established that PALB2 was responsible for 1.3% of early-onset breast cancer cases. Our study reports that deleterious mutations in PALB2 account for approximately 2% (1/48) of South African early-onset breast cancer.


Subject(s)
Breast Neoplasms/genetics , Genetic Predisposition to Disease , Nuclear Proteins/genetics , Tumor Suppressor Proteins/genetics , Adult , Age of Onset , Amino Acid Sequence , Base Sequence , DNA Mutational Analysis , Fanconi Anemia Complementation Group N Protein , Female , Humans , Middle Aged , Molecular Sequence Data , Mutation , Pedigree , South Africa
20.
Int J Cancer ; 110(5): 677-82, 2004 Jul 10.
Article in English | MEDLINE | ID: mdl-15146556

ABSTRACT

Germ-line mutations within BRCA1 are responsible for different proportions of inherited susceptibility to breast/ovarian cancer, and the spectrum of mutations within this gene is often unique to certain populations. At this time, there have been no reports regarding the role of BRCA1 in South African breast and/or ovarian cancer families. We therefore screened 90 South African breast/ovarian cancer families for BRCA1 mutations by means of PCR-based mutation detection assays. Eighteen families (20%) were identified with BRCA1 disease-causing mutations. Four Ashkenazi Jewish families were identified with the 185delAG mutation, whereas 2 Afrikaner and 1 Ashkenazi Jewish family were found to harbor the 5382insC mutation. Five of the families (5.56%), all of whom are Afrikaners, were found to carry the novel E881X mutation. Genotype analyses show that these patients share a common ancestor. Genealogic studies have identified 3 possible founding couples for this mutation, all of whom arrived in the Cape from France in the late 1600s. Of the remaining mutations detected, 3 have not been reported previously and include the S451X, 1493delC (detected twice) and 4957insC mutations.


Subject(s)
Breast Neoplasms/genetics , Founder Effect , Genes, BRCA1 , Mutation , Ovarian Neoplasms/genetics , Adult , Carcinoma/genetics , DNA Mutational Analysis , Fallopian Tube Neoplasms/genetics , Family Health , Female , Genotype , Germ-Line Mutation , Humans , Introns , Middle Aged , Mutation, Missense , Polymerase Chain Reaction , Polymorphism, Single-Stranded Conformational , South Africa , White People
SELECTION OF CITATIONS
SEARCH DETAIL
...