Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 5: 5010, 2014 Sep 24.
Article in English | MEDLINE | ID: mdl-25248402

ABSTRACT

Stomatocytes are polymersomes with an infolded bowl-shaped architecture. This internal cavity is connected to the outside environment via a small 'mouth' region. Stomatocytes are assembled from diamagnetic amphiphilic block-copolymers with a highly anisotropic magnetic susceptibility, which permits to magnetically align and deform the polymeric self-assemblies. Here we show the reversible opening and closing of the mouth region of stomatocytes in homogeneous magnetic fields. The control over the size of the opening yields magneto-responsive supramolecular valves that are able to reversibly capture and release cargo. Furthermore, the increase in the size of the opening is gradual and starts at fields below 10 T, which opens the possibility of using these structures for delivery and nanoreactor applications.


Subject(s)
Magnetics/methods , Nanotechnology/methods , Polymers/chemistry , Transport Vesicles/chemistry , Anisotropy , Birefringence , Molecular Structure , Solvents/chemistry
2.
Phys Rev Lett ; 111(12): 127202, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-24093295

ABSTRACT

We have determined the magnetic properties of single-crystalline Au nanorods in solution using an optically detected magnetic alignment technique. The rods exhibit a large anisotropy in the magnetic volume susceptibility (Δχ(V)). Δχ(V) increases with decreasing rod size and increasing aspect ratio and corresponds to an average volume susceptibility (χ(V)), which is drastically enhanced relative to bulk Au. This high value of χ(V) is confirmed by SQUID magnetometry and is temperature independent (between 5 and 300 K). Given this peculiar size, shape, and temperature dependence, we speculate that the enhanced χ(V) is the result of orbital magnetism due to mesoscopic electron trajectories within the nanorods.

3.
Nat Chem ; 4(3): 201-7, 2012 Feb 12.
Article in English | MEDLINE | ID: mdl-22354434

ABSTRACT

Many essential biological molecules exist only in one of two possible mirror-image structures, either because they possess a chiral unit or through their structure (helices, for example, are intrinsically chiral), but so far the origin of this homochirality has not been unraveled. Here we demonstrate that the handedness of helical supramolecular aggregates formed by achiral molecules can be directed by applying rotational, gravitational and orienting forces during the self-assembly process. In this system, supramolecular chirality is determined by the relative directions of rotation and magnetically tuned effective gravity, but the magnetic orientation of the aggregates is also essential. Applying these external forces only during the nucleation step of the aggregation is sufficient to achieve chiral selection. This result shows that an almost instantaneous chiral perturbation can be transferred and amplified in growing supramolecular self-assemblies, and provides evidence that a falsely chiral influence is able to induce absolute enantioselection.


Subject(s)
Macromolecular Substances/chemistry , Magnetic Phenomena , Models, Chemical , Models, Molecular , Porphyrins/chemistry , Rotation , Stereoisomerism , Thermodynamics
4.
Rev Sci Instrum ; 82(5): 053909, 2011 May.
Article in English | MEDLINE | ID: mdl-21639520

ABSTRACT

We describe how the full, isotropic and anisotropic, magnetisation of samples as small as tens of micrometers in size can be sensitively measured using a piezoresistive microcantilever and a small, moveable ferromagnet. Depending on the position of the ferromagnet, a strong but highly local field gradient of up to ∼4200 T/m can be applied at the sample or removed completely during a single measurement. In this way, the magnetic force and torque on the sample can be independently determined without moving the sample or cycling the experimental system. The technique can be used from millikelvin temperatures to ∼85 K and in magnetic fields from 2 T to the highest fields available. We demonstrate its application in measurements of the semimagnetic semiconductor Hg(1 - x)Fe(x)Se, where we achieved a moment sensitivity of better than 2.5 × 10(-14) J/T for both isotropic and anisotropic components.

SELECTION OF CITATIONS
SEARCH DETAIL
...