Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Synchrotron Radiat ; 31(Pt 3): 485-492, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38630438

ABSTRACT

Synchrotron light sources can provide the required spatial coherence, stability and control to support the development of advanced lithography at the extreme ultraviolet and soft X-ray wavelengths that are relevant to current and future fabricating technologies. Here an evaluation of the optical performance of the soft X-ray (SXR) beamline of the Australian Synchrotron (AS) and its suitability for developing interference lithography using radiation in the 91.8 eV (13.5 nm) to 300 eV (4.13 nm) range are presented. A comprehensive physical optics model of the APPLE-II undulator source and SXR beamline was constructed to simulate the properties of the illumination at the proposed location of a photomask, as a function of photon energy, collimation and monochromator parameters. The model is validated using a combination of experimental measurements of the photon intensity distribution of the undulator harmonics. It is shown that the undulator harmonics intensity ratio can be accurately measured using an imaging detector and controlled using beamline optics. Finally, the photomask geometric constraints and achievable performance for the limiting case of fully spatially coherent illumination are evaluated.

2.
J Synchrotron Radiat ; 30(Pt 4): 723-738, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37343017

ABSTRACT

The ability to utilize a hybrid-photon-counting detector to its full potential can significantly influence data quality, data collection speed, as well as development of elaborate data acquisition schemes. This paper facilitates the optimal use of EIGER2 detectors by providing theory and practical advice on (i) the relation between detector design, technical specifications and operating modes, (ii) the use of corrections and calibrations, and (iii) new acquisition features: a double-gating mode, 8-bit readout mode for increasing temporal resolution, and lines region-of-interest readout mode for frame rates up to 98 kHz. Examples of the implementation and application of EIGER2 at several synchrotron sources (ESRF, PETRA III/DESY, ELETTRA, AS/ANSTO) are presented: high accuracy of high-throughput data in serial crystallography using hard X-rays; suppressing higher harmonics of undulator radiation, improving peak shapes, increasing data collection speed in powder X-ray diffraction; faster ptychography scans; and cleaner and faster pump-and-probe experiments.


Subject(s)
Photons , Synchrotrons , X-Rays , Radiography , X-Ray Diffraction
3.
J Appl Crystallogr ; 55(Pt 3): 479-483, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35719300

ABSTRACT

X-ray coherent diffractive imaging (CDI) techniques have been applied with widespread impact to study nanoscale material properties. New fast framing detectors may reveal dynamics that occur at millisecond timescales. This work demonstrates by simulation that kilohertz synchrotron CDI is possible, by making use of redundant information from static parts of the image field. Reconstruction ambiguities are strongly suppressed by applying a spatio-temporal constraint, obviating the need for slower methods of introducing diversity such as ptychography. The relationship between image fidelity and time resolution is investigated and shows that dynamics an order of magnitude faster can be reconstructed, compared with conventional CDI.

4.
J Synchrotron Radiat ; 29(Pt 2): 480-487, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35254312

ABSTRACT

Over the last decade ptychography has progressed rapidly from a specialist ultramicroscopy technique into a mature method accessible to non-expert users. However, to improve scientific value ptychography data must reconstruct reliably, with high image quality and at no cost to other correlative methods. Presented here is the implementation of high-speed ptychography used at the Australian Synchrotron on the XFM beamline, which includes a free-run data collection mode where dead time is eliminated and the scan time is optimized. It is shown that free-run data collection is viable for fast and high-quality ptychography by demonstrating extremely high data rate acquisition covering areas up to 352 000 µm2 at up to 140 µm2 s-1, with 13× spatial resolution enhancement compared with the beam size. With these improvements, ptychography at velocities up to 250 µm s-1 is approaching speeds compatible with fast-scanning X-ray fluorescence microscopy. The combination of these methods provides morphological context for elemental and chemical information, enabling unique scientific outcomes.


Subject(s)
Microscopy , Synchrotrons , Australia , Microscopy/methods
5.
Opt Express ; 28(24): 36862-36872, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33379770

ABSTRACT

Dynamic coherent diffractive imaging (CDI) reveals the fine details of structural, chemical, and biological processes occurring at the nanoscale but imposes strict constraints on the object distribution and illumination. Ptychographic CDI relaxes these constraints by exploiting redundant information in data obtained from overlapping regions of an object, but its time resolution is inherently limited. We have extended ptychographic redundancy into the spatiotemporal domain in dynamic CDI, automatically identifying redundant information in time-series coherent diffraction data obtained from dynamic systems. Simulated synchrotron experiments show that high spatiotemporal resolution is achieved without a priori knowledge of the object or its dynamics.

6.
Chem Commun (Camb) ; 55(8): 1052-1055, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30608504

ABSTRACT

Biological X-ray fluorescence microscopy (XFM) is an important tool for determining quantitative distributions of bioinorganics and essential trace elements. Here we present a new analysis approach for rapid nanoscale ptychographic imaging and simultaneous chemical mapping of large radiation sensitive specimens without image degradation associated with probe evolution.

7.
J Synchrotron Radiat ; 23(Pt 5): 1151-7, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27577770

ABSTRACT

Owing to its extreme sensitivity, quantitative mapping of elemental distributions via X-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step- and fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated.

8.
Sci Rep ; 4: 6796, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25348877

ABSTRACT

Isolating compositional information in biological X-ray imaging can be problematic as such information is conflated with thickness and density variations when viewing in projection through a sample. We demonstrate an effective method for identifying variations in material composition by simultaneously using the quantitative phase and magnitude images provided through soft X-ray ptychography. Using this approach we show significantly increased contrast and improved reliability of the identification of intracellular features from uncharacterised samples. While demonstrated for X-ray ptychography, this method is immediately applicable to electron and optical microscopy methods where the complex transmission function of the sample is recovered.


Subject(s)
Cell Tracking/methods , Microscopy/methods , Molecular Imaging , Animals , Contrast Media/chemistry , Electrons , Fibroblasts/ultrastructure , Mice , X-Rays
9.
Ultramicroscopy ; 143: 88-92, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24209602

ABSTRACT

Phase-diverse X-ray coherent diffractive imaging (CDI) provides a route to high sensitivity and spatial resolution with moderate radiation dose. It also provides a robust solution to the well-known phase-problem, making on-line image reconstruction feasible. Here we apply phase-diverse CDI to a cellular sample, obtaining images of an erythrocyte infected by the sexual stage of the malaria parasite, Plasmodium falciparum, with a radiation dose significantly lower than the lowest dose previously reported for cellular imaging using CDI. The high sensitivity and resolution allow key biological features to be identified within intact cells, providing complementary information to optical and electron microscopy. This high throughput method could be used for fast tomographic imaging, or to generate multiple replicates in two-dimensions of hydrated biological systems without freezing or fixing. This work demonstrates that phase-diverse CDI is a valuable complementary imaging method for the biological sciences and ready for immediate application.


Subject(s)
Diagnostic Imaging/methods , Malaria, Falciparum/diagnosis , Parasites/ultrastructure , Plasmodium falciparum/ultrastructure , X-Ray Diffraction/methods , Animals , Erythrocytes/parasitology , Image Processing, Computer-Assisted/methods , Microscopy, Electron/methods , Optical Imaging/methods , Sensitivity and Specificity
10.
Sci Rep ; 3: 2288, 2013.
Article in English | MEDLINE | ID: mdl-23887204

ABSTRACT

X-ray tomography can provide structural information of whole cells in close to their native state. Radiation-induced damage, however, imposes a practical limit to image resolution, and as such, a choice between damage, image contrast, and image resolution must be made. New coherent diffractive imaging techniques, such Fresnel Coherent Diffractive Imaging (FCDI), allows quantitative phase information with exceptional dose efficiency, high contrast, and nano-scale resolution. Here we present three-dimensional quantitative images of a whole eukaryotic cell by FCDI at a spatial resolution below 70 nm with sufficient phase contrast to distinguish major cellular components. From our data, we estimate that the minimum dose required for a similar resolution is close to that predicted by the Rose criterion, considerably below accepted estimates of the maximum dose a frozen-hydrated cell can tolerate. Based on the dose efficiency, contrast, and resolution achieved, we expect this technique will find immediate applications in tomographic cellular characterisation.


Subject(s)
Single-Cell Analysis/methods , Tomography, X-Ray Computed/methods , Erythrocytes/cytology , Erythrocytes/parasitology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...