Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
CPT Pharmacometrics Syst Pharmacol ; 9(7): 374-383, 2020 07.
Article in English | MEDLINE | ID: mdl-32558397

ABSTRACT

Gaucher's disease type 1 (GD1) leads to significant morbidity and mortality through clinical manifestations, such as splenomegaly, hematological complications, and bone disease. Two types of therapies are currently approved for GD1: enzyme replacement therapy (ERT), and substrate reduction therapy (SRT). In this study, we have developed a quantitative systems pharmacology (QSP) model, which recapitulates the effects of eliglustat, the only first-line SRT approved for GD1, on treatment-naïve or patients with ERT-stabilized adult GD1. This multiscale model represents the mechanism of action of eliglustat that leads toward reduction of spleen volume. Model capabilities were illustrated through the application of the model to predict ERT and eliglustat responses in virtual populations of adult patients with GD1, representing patients across a spectrum of disease severity as defined by genotype-phenotype relationships. In summary, the QSP model provides a mechanistic computational platform for predicting treatment response via different modalities within the heterogeneous GD1 patient population.


Subject(s)
Gaucher Disease/drug therapy , Models, Biological , Pyrrolidines/pharmacology , Systems Biology , Adult , Enzyme Inhibitors/pharmacology , Gaucher Disease/physiopathology , Humans , Severity of Illness Index , Splenomegaly/drug therapy , Splenomegaly/etiology , Treatment Outcome
2.
CPT Pharmacometrics Syst Pharmacol ; 7(7): 442-452, 2018 07.
Article in English | MEDLINE | ID: mdl-29920993

ABSTRACT

Acid sphingomyelinase deficiency (ASMD) is a rare lysosomal storage disorder with heterogeneous clinical manifestations, including hepatosplenomegaly and infiltrative pulmonary disease, and is associated with significant morbidity and mortality. Olipudase alfa (recombinant human acid sphingomyelinase) is an enzyme replacement therapy under development for the non-neurological manifestations of ASMD. We present a quantitative systems pharmacology (QSP) model supporting the clinical development of olipudase alfa. The model is multiscale and mechanistic, linking the enzymatic deficiency driving the disease to molecular-level, cellular-level, and organ-level effects. Model development was informed by natural history, and preclinical and clinical studies. By considering patient-specific pharmacokinetic (PK) profiles and indicators of disease severity, the model describes pharmacodynamic (PD) and clinical end points for individual patients. The ASMD QSP model provides a platform for quantitatively assessing systemic pharmacological effects in adult and pediatric patients, and explaining variability within and across these patient populations, thereby supporting the extrapolation of treatment response from adults to pediatrics.


Subject(s)
Enzyme Replacement Therapy/methods , Models, Biological , Niemann-Pick Diseases/therapy , Recombinant Proteins/therapeutic use , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/therapeutic use , Animals , Calibration , Humans , Mice , Mice, Knockout , Recombinant Proteins/pharmacokinetics , Sphingomyelin Phosphodiesterase/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...