Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Arthritis Rheumatol ; 75(7): 1152-1165, 2023 07.
Article in English | MEDLINE | ID: mdl-36657110

ABSTRACT

OBJECTIVE: Spondyloarthritis (SpA) is characterized by pathologic osteogenesis, inflammation, and extensive angiogenesis in axial and peripheral tissues. Current therapies effectively target inflammation, but these therapies lack efficacy in preventing pathologic osteogenesis. Transgenic mice overexpressing transmembrane tumor necrosis factor (tmTNF-Tg mice) exhibit SpA-like features. We hypothesized that type H blood vessels, which are implicated in osteogenesis, are increased and contribute to pathology in this experimental SpA model. METHODS: We analyzed ankles, femora, and vertebrae of tmTNF-Tg mice and nontransgenic littermates and tmTNF-Tg mice on either a TNF receptor type I (TNFRI)-deficient or TNF receptor type II (TNFRII)-deficient background for osteogenesis, angiogenesis, and inflammation using advanced imaging technologies at various stages of disease. RESULTS: Compared to nontransgenic littermates, tmTNF-Tg mice exhibited an increase in vertebral type H vessels and osteoprogenitor cells in subchondral bone. These features of increased angiogenesis and osteogenesis were already present before onset of clinical disease symptoms. Type H vessels and osteoprogenitor cells were in close proximity to inflammatory lesions and ectopic lymphoid structures. The tmTNF-Tg mice also showed perivertebral ectopic type H vessels and osteogenesis, an increased number of vertebral transcortical vessels, and enhanced entheseal angiogenesis. In tmTNF-Tg mice crossed on a TNFRI- or TNFRII-deficient background, no clear reduction in type H vessels was shown, suggesting that type H vessel formation is not exclusively mediated via TNFRI or TNFRII. CONCLUSION: The contribution of type H vessels to pathologic osteogenesis in experimental SpA advances our knowledge of the pathophysiology of this disease and may also provide a novel opportunity for targeted intervention.


Subject(s)
Osteogenesis , Spondylarthritis , Mice , Animals , Inflammation , Spondylarthritis/drug therapy , Mice, Transgenic , Tumor Necrosis Factor-alpha
2.
Front Immunol ; 13: 860327, 2022.
Article in English | MEDLINE | ID: mdl-35769477

ABSTRACT

Endothelial cells (ECs) are important contributors to inflammation in immune-mediated inflammatory diseases (IMIDs). In this study, we examined whether CD4+ memory T (Tm) cells can drive EC inflammatory responses. Human Tm cells produced ligands that induced inflammatory responses in human umbilical vein EC as exemplified by increased expression of inflammatory mediators including chemokines and adhesion molecules. NF-κB, a key regulator of EC activation, was induced by Tm cell ligands. We dissected the relative contribution of canonical and non-canonical NF-κB signaling to Tm induced EC responses using pharmacological small molecule inhibitors of IKKß (iIKKß) or NF-κB inducing kinase (iNIK). RNA sequencing revealed substantial overlap in IKKß and NIK regulated genes (n=549) that were involved in inflammatory and immune responses, including cytokines (IL-1ß, IL-6, GM-CSF) and chemokines (CXCL5, CXCL1). NIK regulated genes were more restricted, as 332 genes were uniquely affected by iNIK versus 749 genes by iIKKß, the latter including genes involved in metabolism, proliferation and leukocyte adhesion (VCAM-1, ICAM-1). The functional importance of NIK and IKKß in EC activation was confirmed by transendothelial migration assays with neutrophils, demonstrating stronger inhibitory effects of iIKKß compared to iNIK. Importantly, iIKKß - and to some extent iNIK - potentiated the effects of currently employed therapies for IMIDs, like JAK inhibitors and anti-IL-17 antibodies, on EC inflammatory responses. These data demonstrate that inhibition of NF-κB signaling results in modulation of Tm cell-induced EC responses and highlight the potential of small molecule NF-κB inhibitors as a novel treatment strategy to target EC inflammatory responses in IMIDs.


Subject(s)
Endothelial Cells , NF-kappa B , CD4-Positive T-Lymphocytes/metabolism , Chemokines/metabolism , Endothelial Cells/metabolism , Humans , I-kappa B Kinase/metabolism , Memory T Cells , NF-kappa B/metabolism , Signal Transduction
3.
Int J Mol Sci ; 23(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35216345

ABSTRACT

Soluble tumor necrosis factor (sTNF) is an important inflammatory mediator and essential for secondary lymphoid organ (SLO) development and function. However, the role of its transmembrane counterpart (tmTNF) in these processes is less well established. Here, the effects of tmTNF overxpression on SLO architecture and function were investigated using tmTNF-transgenic (tmTNF-tg) mice. tmTNF overexpression resulted in enlarged peripheral lymph nodes (PLNs) and spleen, accompanied by an increase in small splenic lymphoid follicles, with less well-defined primary B cell follicles and T cell zones. In tmTNF-tg mice, the spleen, but not PLNs, contained reduced germinal center (GC) B cell fractions, with low Ki67 expression and reduced dark zone characteristics. In line with this, smaller fractions of T follicular helper (Tfh) and T follicular regulatory (Tfr) cells were observed with a decreased Tfh:Tfr ratio. Moreover, plasma cell (PC) formation in the spleen of tmTNF-tg mice decreased and skewed towards IgA and IgM expression. Genetic deletion of TNFRI or -II resulted in a normalization of follicle morphology in the spleen of tmTNF-tg mice, but GC B cell and PC fractions remained abnormal. These findings demonstrate that tightly regulated tmTNF is important for proper SLO development and function, and that aberrations induced by tmTNF overexpression are site-specific and mediated via TNFRI and/or TNFRII signaling.


Subject(s)
Receptors, Tumor Necrosis Factor, Type II/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Spleen/metabolism , Animals , B-Lymphocytes/metabolism , Germinal Center/metabolism , Immunoglobulin A/metabolism , Immunoglobulin M/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plasma Cells/metabolism , Signal Transduction/physiology , T Follicular Helper Cells/metabolism , T-Lymphocytes, Regulatory/metabolism
4.
J Immunol ; 207(9): 2337-2346, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34561228

ABSTRACT

TNF is important in immune-mediated inflammatory diseases, including spondyloarthritis (SpA). Transgenic (tg) mice overexpressing transmembrane TNF (tmTNF) develop features resembling human SpA. Furthermore, both tmTNF tg mice and SpA patients develop ectopic lymphoid aggregates, but it is unclear whether these contribute to pathology. Therefore, we characterized the lymphoid aggregates in detail and studied potential alterations in the B and T cell lineage in tmTNF tg mice. Lymphoid aggregates developed in bone marrow (BM) of vertebrae and near the ankle joints prior to the first SpA features and displayed characteristics of ectopic lymphoid structures (ELS) including presence of B cells, T cells, germinal centers, and high endothelial venules. Detailed flow cytometric analyses demonstrated more germinal center B cells with increased CD80 and CD86 expression, along with significantly more T follicular helper, T follicular regulatory, and T regulatory cells in tmTNF tg BM compared with non-tg controls. Furthermore, tmTNF tg mice exhibited increased IgA serum levels and significantly more IgA+ plasma cells in the BM, whereas IgA+ plasma cells in the gut were not significantly increased. In tmTNF tg × TNF-RI-/- mice, ELS were absent, consistent with reduced disease symptoms, whereas in tmTNF tg × TNF-RII-/- mice, ELS and clinical symptoms were still present. Collectively, these data show that tmTNF overexpression in mice results in osteitis and ELS formation in BM, which may account for the increased serum IgA levels that are also observed in human SpA. These effects are mainly dependent on TNF-RI signaling and may underlie important aspects of SpA pathology.


Subject(s)
B-Lymphocytes/immunology , Bone Marrow/metabolism , Germinal Center/immunology , Membrane Proteins/metabolism , Osteitis/immunology , Spondylitis, Ankylosing/immunology , T-Lymphocytes/immunology , Tertiary Lymphoid Structures/immunology , Tumor Necrosis Factor-alpha/metabolism , Animals , Bone Marrow/pathology , Cell Differentiation , Cell Lineage , Cells, Cultured , Disease Models, Animal , Humans , Immunoglobulin A/metabolism , Membrane Proteins/genetics , Mice , Signal Transduction , Tumor Necrosis Factor-alpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...