Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 7(6): e1143, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28585930

ABSTRACT

Depression is one of the most prevalent and debilitating psychiatric disorders worldwide. Recently, we showed that both relatively short and relatively long cytosine-adenine-guanine (CAG) repeats in the huntingtin gene (HTT) are associated with an increased risk of lifetime depression. However, to what extent the variations in CAG repeat length in the other eight polyglutamine disease-associated genes (PDAGs) are associated with depression is still unknown. We determined the CAG repeat sizes of ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, TBP, ATN1 and AR in two well-characterized Dutch cohorts-the Netherlands Study of Depression and Anxiety and the Netherlands Study of Depression in Older Persons-including 2165 depressed and 1058 non-depressed individuals-aged 18-93 years. The association between PDAG CAG repeat size and the risk for depression was assessed via binary logistic regression. We found that the odds ratio (OR) for lifetime depression was significantly higher for individuals with >10, compared with subjects with ≤10, CAG repeats in both ATXN7 alleles (OR=1.90, confidence interval (CI) 1.26-2.85). For TBP we found a similar association: A CAG repeat length exceeding the median in both alleles was associated with an increased risk for lifetime depression (OR=1.33, CI 1.00-1.76). In conclusion, we observed that carriers of either ATXN7 or TBP alleles with relatively large CAG repeat sizes in both alleles had a substantially increased risk of lifetime depression. Our findings provide critical evidence for the notion that repeat polymorphisms can act as complex genetic modifiers of depression.


Subject(s)
Ataxin-7/genetics , Genetic Predisposition to Disease , TATA-Box Binding Protein/genetics , Trinucleotide Repeats , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Ataxins/genetics , Calcium Channels/genetics , Case-Control Studies , Depressive Disorder/genetics , Female , Humans , Male , Middle Aged , Nerve Tissue Proteins/genetics , Polymorphism, Genetic , Receptors, Androgen/genetics , Young Adult
2.
Neuroscience ; 238: 71-81, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23403175

ABSTRACT

The predominant motor symptom in Huntington's disease (HD) is chorea. The patho-anatomical basis for the chorea is not well known, but a link with the dopaminergic system has been suggested by post-mortem and clinical studies. Our previous work revealed an increased number of dopamine-containing cells in the substantia nigra and ventral tegmental area in a transgenic rat model of HD (tgHD). Since there were no changes in the total number of cells in those regions, we hypothesized that changes in cell phenotype were taking place. Here, we tested this hypothesis by studying the dorsal raphe nucleus (DRN), which houses dopaminergic and non-dopaminergic (mainly serotonergic) neurons in tgHD rat tissue and postmortem HD human tissue. We found an increased number of dopamine and reduced number of serotonin-containing cells in the DRN of tgHD rats. Similar findings in postmortem HD brain tissue indicate that these changes also occur in patients. Further investigations in the tgHD animal tissue revealed the presence of dopaminergic cell bodies in the B6 raphe region, while in control animals exclusively serotonin-containing cells were found. These data suggest the existence of phenotype changes in monoaminergic neurons in the DRN in HD and shed new light on the neurobiology of clinical neurological symptoms such as chorea and mood changes.


Subject(s)
Dopaminergic Neurons/pathology , Huntington Disease/pathology , Raphe Nuclei/pathology , Serotonergic Neurons/pathology , Aged , Aged, 80 and over , Animals , Cell Count , Disease Models, Animal , Female , Humans , Male , Middle Aged , Rats , Rats, Transgenic
3.
Neurology ; 73(16): 1280-5, 2009 Oct 20.
Article in English | MEDLINE | ID: mdl-19776381

ABSTRACT

OBJECTIVE: Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by a CAG repeat expansion in the HD gene (HTT). We aimed to assess whether interaction between CAG repeat sizes in the mutant and normal allele could affect disease severity and progression. METHODS: Using linear regression and mixed-effects models, the influence of mutant and normal CAG repeat sizes interaction was assessed on 1) age at onset in 921 patients with HD, 2) clinical severity and progression in 512 of these patients with follow-up data available, and 3) basal ganglia volume on magnetic resonance images in 16 premanifest HD mutation carriers. RESULTS: Normal and mutant CAG repeat sizes interacted to influence 1) age at onset (p = 0.001), 2) severity or progression of motor, cognitive, and functional, but not behavioral, symptoms in patients with HD (all p < 0.05), and 3) in premanifest subjects, basal ganglia volumes (p < 0.05). In subjects with mutant CAG expansions in the low range, increasing size of the normal repeat correlated with more severe symptoms and pathology, whereas for those subjects with expansions in the high range, increasing size of the normal repeat correlated with less severe symptoms and pathology. CONCLUSIONS: Increasing CAG repeat size in normal HTT diminishes the association between mutant CAG repeat size and disease severity and progression in Huntington disease. The underlying mechanism may involve interaction of the polyglutamine domains of normal and mutant huntingtin (fragments) and needs further elucidation. These findings may have predictive value and are essential for the design and interpretation of future therapeutic trials.


Subject(s)
Huntington Disease/epidemiology , Huntington Disease/genetics , Serotonin Plasma Membrane Transport Proteins/genetics , Trinucleotide Repeat Expansion , Adolescent , Adult , Age of Onset , Aged , Basal Ganglia/pathology , Child , Disease Progression , Female , Follow-Up Studies , Humans , Huntington Disease/pathology , Magnetic Resonance Imaging , Male , Middle Aged , Mutation , Prospective Studies , Severity of Illness Index , Young Adult
4.
Cell Tissue Bank ; 9(3): 169-79, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18357514

ABSTRACT

To further understand the neuroanatomy, neurochemistry and neuropathology of the normal and diseased human brain, it is essential to have access to human brain tissue where the biological and chemical nature of the tissue is optimally preserved. We have established a human brain bank where brain tissue is optimally processed and stored in order to provide a resource to facilitate neuroscience research of the human brain in health and disease. A donor programme has been established in consultation with the community to provide for the post-mortem donation of brain tissue to the brain bank. We are using this resource of human brain tissue to further investigate the basis of normal neuronal functioning in the human brain as well as the mechanisms of neuronal dysfunction and degeneration in neurodegenerative diseases. We have established a protocol for the preservation of post-mortem adult human brain tissue firstly by snap-freezing unfixed brain tissue and secondly by chemical fixation and then storage of this tissue at -80 degrees C in a human brain bank. Several research techniques such as receptor autoradiography, DNA and RNA analysis, are carried out on the unfixed tissue and immunohistochemical and histological analysis is carried out on the fixed human tissue. Comparison of tissue from normal control cases and from cases with neurodegenerative disorders is carried out in order to document the changes that occur in the brain in these disorders and to further investigate the underlying pathogenesis of these devastating neurological diseases.


Subject(s)
Brain , Research Design , Specimen Handling/methods , Tissue Banks/organization & administration , Humans , Organ Preservation , Tissue Donors , Tissue and Organ Procurement
5.
Neuroscience ; 133(4): 863-72, 2005.
Article in English | MEDLINE | ID: mdl-15916858

ABSTRACT

TATA binding protein (TBP) is a general transcription factor that plays an important role in initiation of transcription. In recent years evidence has emerged implicating TPB in the molecular mechanism of a number of neurodegenerative diseases. Wild type TBP in humans contains a long polyglutamine stretch ranging in size from 29 to 42. It has been found associated with aggregated proteins in several of the polyglutamine disorders. Expansion in the CAA/CAG composite repeat beyond 42 has been shown to cause a cerebellar ataxia, SCA17. The involvement of such an important housekeeping protein in the disease mechanism suggests a major impact on the functioning of cells. The question remains, does TBP contribute to these diseases through a loss of normal function, likely to be catastrophic to a cell, or the gain of an aberrant function? This review deals with the function of TBP in transcription and cell function. The distribution of the polyglutamine coding allele lengths in TBP of the normal population and in SCA17 is reviewed and an outline is given on the reported cases of SCA17. The role of TBP in other polyglutamine disorders will be addressed as well as its possible role in other neurodegenerative diseases.


Subject(s)
Neurodegenerative Diseases/metabolism , TATA-Box Binding Protein/physiology , Animals , Humans , Models, Molecular , Mutation , Neurodegenerative Diseases/genetics , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/metabolism , TATA-Binding Protein Associated Factors/metabolism , Transcription, Genetic/physiology , Trinucleotide Repeat Expansion/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...