Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 110(39): 19191-7, 2006 Oct 05.
Article in English | MEDLINE | ID: mdl-17004768

ABSTRACT

In this study, the influence of the TiCl(4) post-treatment on nanocrystalline TiO(2) films as electrodes in dye-sensitized solar cells is investigated and compared to nontreated films. As a result of this post-treatment cell efficiencies are improved, due to higher photocurrents. On a microscopic scale TiO(2) particle growth on the order of 1 nm is observed. Despite a corresponding decrease of BET surface area, more dye is adsorbed onto the oxide surface. Although it seems trivial to match this finding with the improved photocurrent, this performance improvement cannot be attributed to higher dye adsorption only. This follows from comparison between incident photon to current conversion efficiency (IPCE) and light absorption characteristics. Since the charge transport properties of the TiO(2) films are already more than sufficient without treatment, the increase in short circuit current density J(SC) cannot be related to improvements in charge transport either. Transient photocurrent measurements indicate a shift in the conduction band edge of the TiO(2) upon TiCl(4) treatment. It is concluded that the main contribution to enhanced current originates from this shift in conduction band edge, resulting in improved charge injection into the TiO(2).

SELECTION OF CITATIONS
SEARCH DETAIL
...