Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 98, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29311708

ABSTRACT

Innovations in nanostructuring of inorganic crystalline solids are often limited by prerequisite critical nucleation energy and solute supersaturation for formation of a phase. This research provides direct evidence supporting the viability of an unconventional irradiation-induced nanostructuring process, via transmission electron microscopy, that circumvents these preconditions. Using polymorphic silicon carbide (SiC) as a prototype, a surprising two-step nucleation route is demonstrated through which nanoscale distribution of the second phase is achieved by reaction of solutes with neutron irradiation-induced precursors. In the first step, nanoscale α-SiC precipitates in a ß-SiC matrix unexpectedly nucleate heterogeneously at structural defects. This occurs at significantly lower temperatures compared with the usual ß→α transition temperature. Subsequently, α-SiC precipitate acts as a surrogate template for its structural and compositional transition into a fission product precipitate, palladium silicide. These discoveries provide a modern view of irradiation engineering in polymorphic ceramics for advanced applications.

2.
Microsc Microanal ; 21(5): 1184-94, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26350148

ABSTRACT

The preparation of transmission electron microcopy (TEM) samples from powders with particle sizes larger than ~100 nm poses a challenge. The existing methods are complicated and expensive, or have a low probability of success. Herein, we report a modified methodology for preparation of TEM samples from powders, which is efficient, cost-effective, and easy to perform. This method involves mixing powders with an epoxy on a piece of weighing paper, curing the powder-epoxy mixture to form a bulk material, grinding the bulk to obtain a thin foil, punching TEM discs from the foil, dimpling the discs, and ion milling the dimpled discs to electron transparency. Compared with the well established and robust grinding-dimpling-ion-milling method for TEM sample preparation for bulk materials, our modified approach for preparing TEM samples from powders only requires two additional simple steps. In this article, step-by-step procedures for our methodology are described in detail, and important strategies to ensure success are elucidated. Our methodology has been applied successfully for preparing TEM samples with large thin areas and high quality for many different mechanically milled metallic powders.

SELECTION OF CITATIONS
SEARCH DETAIL
...