Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 40(6): 1587-95, 2001 Feb 13.
Article in English | MEDLINE | ID: mdl-11327817

ABSTRACT

Heteronuclear 2-D and 3-D magic-angle spinning NMR dipolar correlation spectroscopy was applied to determine solid-state (1)H shifts for aggregated bacteriochlorophyll c (BChl c) in uniformly (13)C-enriched light harvesting chlorosomes of the green photosynthetic bacterium Chlorobium tepidum. A complete assignment of 29 different observable resonances of the 61 protons of the aggregated BChl c in the intact chlorosomes is obtained. Aggregation shifts relative to monomeric BChl c in solution are detected for protons attached to rings I, II, and III/V and to their side chains. The 2(1)-H(3), 3(2)-H(3), and 3(1)-H resonances are shifted upfield by -2.2, -1, and -3.3 ppm, respectively, relative to monomeric BChl c in solution. Although the resonances are inhomogeneously broadened and reveal considerable global structural heterogeneity, the 5-CH and the 7-Me responses are doubled, which provides evidence for the existence of at least two relatively well-defined structurally different arrangements. Ab initio quantum chemical modeling studies were performed to refine a model for the self-assembled BChl c with two different types of BChl stacks. The BChl in the stacks can adopt either anti- or syn-configuration of the coordinative bond, where anti and syn designate the relative orientation of the Mg-OH bond relative to the direction of the 17-17(1) bond. The analogy between aggregation shifts for BChl c in the chlorosome and for self-assembled chlorophyll a/H(2)O is explored, and a bilayer model for the tubular supra-structure of sheets of BChl c is proposed, from a homology modeling approach.


Subject(s)
Bacterial Proteins/chemistry , Bacteriochlorophylls , Chlorobi/chemistry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular/methods , Protons , Carbon Isotopes , Computer Simulation , Light-Harvesting Protein Complexes , Organelles/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Solutions
2.
Chembiochem ; 2(12): 906-14, 2001 Dec 03.
Article in English | MEDLINE | ID: mdl-11948879

ABSTRACT

The assignment of nonexchanging protons of a small microcrystalline protein, the alpha-spectrin SH3 domain (7.2 kDa, 62 residues), was achieved by means of three-dimensional (3D) heteronuclear (1H-13C-13C) magic-angle spinning (MAS) NMR dipolar correlation spectroscopy. With the favorable combination of a high B(0)-field, a moderately high spinning frequency, and frequency-switched Lee-Goldburg irradiation applied during 1H evolution, a proton linewidth < or =0.5 ppm at 17.6 Tesla was achieved for the particular protein preparation used. A comparison of the solid-state 1H chemical shifts with the shifts found in solution shows a remarkable similarity, which reflects the identical protein structures in solution and in the solid. Significant differences between the MAS solid- and liquid-state 1H chemical shifts are only observed for residues that are located at the surface of the protein and that exhibit contacts between different SH3 molecules. In two cases, aromatic residues of neighboring SH3 molecules induce pronounced upfield ring-current shifts for protons in the contact area.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Spectrin/chemistry , src Homology Domains , Models, Molecular , Protein Conformation , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...