Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Heart J Digit Health ; 5(2): 183-191, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38505481

ABSTRACT

Aims: Many portable electrocardiogram (ECG) devices have been developed to monitor patients at home, but the majority of these devices are single lead and only intended for rhythm disorders. We developed the miniECG, a smartphone-sized portable device with four dry electrodes capable of recording a high-quality multi-lead ECG by placing the device on the chest. The aim of our study was to investigate the ability of the miniECG to detect occlusive myocardial infarction (OMI) in patients with chest pain. Methods and results: Patients presenting with acute chest pain at the emergency department of the University Medical Center Utrecht or Meander Medical Center, between May 2021 and February 2022, were included in the study. The clinical 12-lead ECG and the miniECG before coronary intervention were recorded. The recordings were evaluated by cardiologists and compared the outcome of the coronary angiography, if performed. A total of 369 patients were measured with the miniECG, 46 of whom had OMI. The miniECG detected OMI with a sensitivity and specificity of 65 and 92%, compared with 83 and 90% for the 12-lead ECG. Sensitivity of the miniECG was similar for different culprit vessels. Conclusion: The miniECG can record a multi-lead ECG and rule-in ST-segment deviation in patients with occluded or near-occluded coronary arteries from different culprit vessels without many false alarms. Further research is required to add automated analysis to the recordings and to show feasibility to use the miniECG by patients at home.

2.
Eur Heart J Digit Health ; 5(1): 89-96, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38264701

ABSTRACT

Aims: Expert knowledge to correctly interpret electrocardiograms (ECGs) is not always readily available. An artificial intelligence (AI)-based triage algorithm (DELTAnet), able to support physicians in ECG prioritization, could help reduce current logistic burden of overreading ECGs and improve time to treatment for acute and life-threatening disorders. However, the effect of clinical implementation of such AI algorithms is rarely investigated. Methods and results: Adult patients at non-cardiology departments who underwent ECG testing as a part of routine clinical care were included in this prospective cohort study. DELTAnet was used to classify 12-lead ECGs into one of the following triage classes: normal, abnormal not acute, subacute, and acute. Performance was compared with triage classes based on the final clinical diagnosis. Moreover, the associations between predicted classes and clinical outcomes were investigated. A total of 1061 patients and ECGs were included. Performance was good with a mean concordance statistic of 0.96 (95% confidence interval 0.95-0.97) when comparing DELTAnet with the clinical triage classes. Moreover, zero ECGs that required a change in policy or referral to the cardiologist were missed and there was a limited number of cases predicted as acute that did not require follow-up (2.6%). Conclusion: This study is the first to prospectively investigate the impact of clinical implementation of an ECG-based AI triage algorithm. It shows that DELTAnet is efficacious and safe to be used in clinical practice for triage of 12-lead ECGs in non-cardiology hospital departments.

3.
Ann Clin Transl Neurol ; 10(10): 1776-1789, 2023 10.
Article in English | MEDLINE | ID: mdl-37545104

ABSTRACT

OBJECTIVE: To develop an automated, physiologic metric of immune effector cell-associated neurotoxicity syndrome among patients undergoing chimeric antigen receptor-T cell therapy. METHODS: We conducted a retrospective observational cohort study from 2016 to 2020 at two tertiary care centers among patients receiving chimeric antigen receptor-T cell therapy with a CD19 or B-cell maturation antigen ligand. We determined the daily neurotoxicity grade for each patient during EEG monitoring via chart review and extracted clinical variables and outcomes from the electronic health records. Using quantitative EEG features, we developed a machine learning model to detect the presence and severity of neurotoxicity, known as the EEG immune effector cell-associated neurotoxicity syndrome score. RESULTS: The EEG immune effector cell-associated neurotoxicity syndrome score significantly correlated with the grade of neurotoxicity with a median Spearman's R2 of 0.69 (95% CI of 0.59-0.77). The mean area under receiving operator curve was greater than 0.85 for each binary discrimination level. The score also showed significant correlations with maximum ferritin (R2 0.24, p = 0.008), minimum platelets (R2 -0.29, p = 0.001), and dexamethasone usage (R2 0.42, p < 0.0001). The score significantly correlated with duration of neurotoxicity (R2 0.31, p < 0.0001). INTERPRETATION: The EEG immune effector cell-associated neurotoxicity syndrome score possesses high criterion, construct, and predictive validity, which substantiates its use as a physiologic method to detect the presence and severity of neurotoxicity among patients undergoing chimeric antigen receptor T-cell therapy.


Subject(s)
Receptors, Chimeric Antigen , Humans , Retrospective Studies , Adaptor Proteins, Signal Transducing , Electroencephalography
4.
JMIR Cardio ; 7: e44003, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37418308

ABSTRACT

BACKGROUND: Electrocardiograms (ECGs) are used by physicians to record, monitor, and diagnose the electrical activity of the heart. Recent technological advances have allowed ECG devices to move out of the clinic and into the home environment. There is a great variety of mobile ECG devices with the capabilities to be used in home environments. OBJECTIVE: This scoping review aimed to provide a comprehensive overview of the current landscape of mobile ECG devices, including the technology used, intended clinical use, and available clinical evidence. METHODS: We conducted a scoping review to identify studies concerning mobile ECG devices in the electronic database PubMed. Secondarily, an internet search was performed to identify other ECG devices available in the market. We summarized the devices' technical information and usability characteristics based on manufacturer data such as datasheets and user manuals. For each device, we searched for clinical evidence on the capabilities to record heart disorders by performing individual searches in PubMed and ClinicalTrials.gov, as well as the Food and Drug Administration (FDA) 510(k) Premarket Notification and De Novo databases. RESULTS: From the PubMed database and internet search, we identified 58 ECG devices with available manufacturer information. Technical characteristics such as shape, number of electrodes, and signal processing influence the capabilities of the devices to record cardiac disorders. Of the 58 devices, only 26 (45%) had clinical evidence available regarding their ability to detect heart disorders such as rhythm disorders, more specifically atrial fibrillation. CONCLUSIONS: ECG devices available in the market are mainly intended to be used for the detection of arrhythmias. No devices are intended to be used for the detection of other cardiac disorders. Technical and design characteristics influence the intended use of the devices and use environments. For mobile ECG devices to be intended to detect other cardiac disorders, challenges regarding signal processing and sensor characteristics should be solved to increase their detection capabilities. Devices recently released include the use of other sensors on ECG devices to increase their detection capabilities.

5.
Sci Rep ; 12(1): 20011, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36414694

ABSTRACT

CAR-T cell therapy is an effective cancer therapy for multiple refractory/relapsed hematologic malignancies but is associated with substantial toxicity, including Immune Effector Cell Associated Neurotoxicity Syndrome (ICANS). Improved detection and assessment of ICANS could improve management and allow greater utilization of CAR-T cell therapy, however, an objective, specific biomarker has not been identified. We hypothesized that the severity of ICANS can be quantified based on patterns of abnormal brain activity seen in electroencephalography (EEG) signals. We conducted a retrospective observational study of 120 CAR-T cell therapy patients who had received EEG monitoring. We determined a daily ICANS grade for each patient through chart review. We used visually assessed EEG features and machine learning techniques to develop the Visual EEG-Immune Effector Cell Associated Neurotoxicity Syndrome (VE-ICANS) score and assessed the association between VE-ICANS and ICANS. We also used it to determine the significance and relative importance of the EEG features. We developed the Visual EEG-ICANS (VE-ICANS) grading scale, a grading scale with a physiological basis that has a strong correlation to ICANS severity (R = 0.58 [0.47-0.66]) and excellent discrimination measured via area under the receiver operator curve (AUC = 0.91 for ICANS ≥ 2). This scale shows promise as a biomarker for ICANS which could help to improve clinical care through greater accuracy in assessing ICANS severity.


Subject(s)
Hematologic Neoplasms , Neurotoxicity Syndromes , Receptors, Chimeric Antigen , Humans , Neoplasm Recurrence, Local , Neurotoxicity Syndromes/diagnosis , Neurotoxicity Syndromes/etiology , Electroencephalography , Biomarkers
6.
Crit Care Med ; 50(1): e11-e19, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34582420

ABSTRACT

OBJECTIVES: Delirium is a common and frequently underdiagnosed complication in acutely hospitalized patients, and its severity is associated with worse clinical outcomes. We propose a physiologically based method to quantify delirium severity as a tool that can help close this diagnostic gap: the Electroencephalographic Confusion Assessment Method Severity Score (E-CAM-S). DESIGN: Retrospective cohort study. SETTING: Single-center tertiary academic medical center. PATIENTS: Three-hundred seventy-three adult patients undergoing electroencephalography to evaluate altered mental status between August 2015 and December 2019. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We developed the E-CAM-S based on a learning-to-rank machine learning model of forehead electroencephalography signals. Clinical delirium severity was assessed using the Confusion Assessment Method Severity (CAM-S). We compared associations of E-CAM-S and CAM-S with hospital length of stay and inhospital mortality. E-CAM-S correlated with clinical CAM-S (R = 0.67; p < 0.0001). For the overall cohort, E-CAM-S and CAM-S were similar in their strength of association with hospital length of stay (correlation = 0.31 vs 0.41, respectively; p = 0.082) and inhospital mortality (area under the curve = 0.77 vs 0.81; p = 0.310). Even when restricted to noncomatose patients, E-CAM-S remained statistically similar to CAM-S in its association with length of stay (correlation = 0.37 vs 0.42, respectively; p = 0.188) and inhospital mortality (area under the curve = 0.83 vs 0.74; p = 0.112). In addition to previously appreciated spectral features, the machine learning framework identified variability in multiple measures over time as important features in electroencephalography-based prediction of delirium severity. CONCLUSIONS: The E-CAM-S is an automated, physiologic measure of delirium severity that predicts clinical outcomes with a level of performance comparable to conventional interview-based clinical assessment.


Subject(s)
Confusion/diagnosis , Delirium/diagnosis , Electroencephalography/methods , Image Processing, Computer-Assisted/methods , Machine Learning , Academic Medical Centers/statistics & numerical data , Adult , Aged , Comorbidity , Female , Hospital Mortality/trends , Hospitals/statistics & numerical data , Humans , Length of Stay/statistics & numerical data , Male , Middle Aged , Patient Acuity , Prognosis , Retrospective Studies , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...