Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Zoo Wildl Med ; 55(2): 301-312, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38875187

ABSTRACT

The wild rhinoceros populations have declined drastically in the past decades because the rhinoceros are heavily hunted for their horns. Zoological institutions aim to conserve rhinoceros populations in captivity, but one of the challenges of ex situ conservation is to provide food sources that resemble those available in the wild. Considering that the mammalian gut microbiota is a pivotal player in their host's health, the gut microbiota of rhinoceros may also play a role in the bioavailability of nutrients. Therefore, this study aims to characterize the fecal microbiome composition of grazing white rhinoceros (WR; Ceratotherium simum) and greater one-horned rhinoceros (GOHR; Rhinoceros unicornis) as well as the browsing black rhinoceros (BR; Diceros bicornis) kept in European zoos. Over the course of 1 yr, 166 fecal samples in total were collected from 9 BR (n = 39), 10 GOHR (n = 56), and 14 WR (n = 71) from 23 zoological institutions. The bacterial composition in the samples was determined using 16S rRNA gene Illumina sequencing. The fecal microbiomes of rhinoceros clustered by species, with BR clustering more distantly from GOHR and WR. Furthermore, the data report clustering of rhinoceros microbiota according to individual rhinoceros and institutional origin, showing that zoological institutions play a significant role in shaping the gut microbiome of rhinoceros species. In addition, BR exhibit a relatively higher microbial diversity than GOHR and WR. BR seem more susceptible to microbial gut changes and appear to have a more diverse microbiome composition among individuals than GOHR and WR. These data expand on the role of gut microbes and can provide baseline data for continued efforts in rhinoceros conservation and health status.


Subject(s)
Animals, Zoo , Gastrointestinal Microbiome , Perissodactyla , Animals , Perissodactyla/microbiology , Animals, Zoo/microbiology , Europe , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Species Specificity , Feces/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Bacterial/genetics
2.
BMC Genom Data ; 25(1): 27, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443836

ABSTRACT

OBJECTIVES: The black rhinoceros (Diceros bicornis) is an endangered mammal for which a captive breeding program is part of the conservation effort. Black rhinos in zoo's often suffer from chronic infections and heamochromatosis. Furthermore, breeding is hampered by low male fertility. To aid a research project studying these topics, we sequenced and assembled the genome of a captive male black rhino using ONT sequencing data only. DATA DESCRIPTION: This work produced over 100 Gb whole genome sequencing reads from whole blood. These were assembled into a 2.47 Gb draft genome consisting of 834 contigs with an N50 of 29.53 Mb. The genome annotation was lifted over from an available genome annotation for black rhino, which resulted in the retrieval of over 99% of gene features. This new genome assembly will be a valuable resource in for conservation genetic research in this species.


Subject(s)
Genetic Research , Nose , Male , Animals , Perissodactyla/genetics , Persistent Infection , Research Design
3.
Euro Surveill ; 28(28)2023 07.
Article in English | MEDLINE | ID: mdl-37440347

ABSTRACT

In November 2021, seven western lowland gorillas and four Asiatic lions were diagnosed with COVID-19 at Rotterdam Zoo. An outbreak investigation was undertaken to determine the source and extent of the outbreak and to identify possible transmission routes. Interviews were conducted with staff to identify human and animal contacts and cases, compliance with personal protective equipment (PPE) and potential transmission routes. Human and animal contacts and other animal species suspected to be susceptible to SARS-CoV-2 were tested for SARS-CoV-2 RNA. Positive samples were subjected to sequencing. All the gorillas and lions that could be tested (3/7 and 2/4, respectively) were RT-PCR positive between 12 November and 10 December 2021. No other animal species were SARS-CoV-2 RNA positive. Forty direct and indirect human contacts were identified. Two direct contacts tested RT-PCR positive 10 days after the first COVID-19 symptoms in animals. The zookeepers' viral genome sequences clustered with those of gorillas and lions. Personal protective equipment compliance was suboptimal at instances. Findings confirm transmission of SARS-CoV-2 among animals and between humans and animals but source and directionality could not be established. Zookeepers were the most likely source and should have periodic PPE training. Sick animals should promptly be tested and isolated/quarantined.


Subject(s)
COVID-19 , Lions , One Health , Animals , Humans , SARS-CoV-2/genetics , COVID-19/veterinary , Gorilla gorilla , RNA, Viral/genetics , Netherlands/epidemiology
4.
Mol Biol Evol ; 39(6)2022 06 02.
Article in English | MEDLINE | ID: mdl-35642310

ABSTRACT

It is largely unknown how mammalian genomes evolve under rapid speciation and environmental adaptation. An excellent model for understanding fast evolution is provided by the genus Sus, which diverged relatively recently and lacks postzygotic isolation. Here, we present a high-quality reference genome of the Visayan warty pig, which is specialized to a tropical island environment. Comparing the genome sequences and chromatin contact maps of the Visayan warty pig (Sus cebifrons) and domestic pig (Sus scrofa), we characterized the dynamics of chromosomal structure evolution during Sus speciation, revealing the similar chromosome conformation as the potential biological mechanism of frequent postdivergence hybridization among Suidae. We further investigated the different signatures of adaptive selection and domestication in Visayan warty pig and domestic pig with specific emphasize on the evolution of olfactory and gustatory genes, elucidating higher olfactory diversity in Visayan warty pig and positive and relaxed evolution of bitter and fat taste receptors, respectively, in domestic pig. Our comprehensive evolutionary and comparative genome analyses provide insight into the dynamics of genomes and how these change over relative short evolutionary times, as well as how these genomic differences encode for differences in the phenotypes.


Subject(s)
Chromosomes , Genome , Animals , Genomics , Sus scrofa/genetics , Swine/genetics
5.
Cell ; 184(19): 4874-4885.e16, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34433011

ABSTRACT

Only five species of the once-diverse Rhinocerotidae remain, making the reconstruction of their evolutionary history a challenge to biologists since Darwin. We sequenced genomes from five rhinoceros species (three extinct and two living), which we compared to existing data from the remaining three living species and a range of outgroups. We identify an early divergence between extant African and Eurasian lineages, resolving a key debate regarding the phylogeny of extant rhinoceroses. This early Miocene (∼16 million years ago [mya]) split post-dates the land bridge formation between the Afro-Arabian and Eurasian landmasses. Our analyses also show that while rhinoceros genomes in general exhibit low levels of genome-wide diversity, heterozygosity is lowest and inbreeding is highest in the modern species. These results suggest that while low genetic diversity is a long-term feature of the family, it has been particularly exacerbated recently, likely reflecting recent anthropogenic-driven population declines.


Subject(s)
Evolution, Molecular , Genome , Perissodactyla/genetics , Animals , Demography , Gene Flow , Genetic Variation , Geography , Heterozygote , Homozygote , Host Specificity , Markov Chains , Mutation/genetics , Phylogeny , Species Specificity , Time Factors
6.
Chest ; 160(6): 2275-2282, 2021 12.
Article in English | MEDLINE | ID: mdl-34216606

ABSTRACT

BACKGROUND: The "buffalo chest" is a condition in which a simultaneous bilateral pneumothorax occurs due to a communication of both pleural cavities caused by an iatrogenic or idiopathic fenestration of the mediastinum. This rare condition is known by many clinicians because of a particular anecdote which stated that Native Americans could kill a North American bison with a single arrow in the chest by creating a simultaneous bilateral pneumothorax, due to the animal's peculiar anatomy in which there is one contiguous pleural space due to an incomplete mediastinum. RESEARCH QUESTION: What evidence is there for the existence of buffalo chest? STUDY DESIGN AND METHODS: The term "buffalo chest" and its anecdote were first mentioned in a ''personal communication'' by a veterinarian in the Annals of Surgery in 1984. A mixed method research was performed on buffalo chest and its etiology. A total of 47 cases of buffalo chest were identified in humans. RESULTS: This study found that all authors were referring to the article from 1984 or to each other. Evidence was found for interpleural communications in other mammal species, but no literature on the anatomy of the mediastinum of the bison was found. The main reason for this research was fact-checking the origin of the anecdote and search for evidence for the existence of buffalo chest. Autopsies were performed on eight bison, and four indeed were found to have had interpleural communications. INTERPRETATION: We hypothesize that humans can also have interpleural fenestrations, which can be diagnosed when a pneumothorax occurs.


Subject(s)
Bison/anatomy & histology , Mediastinum/anatomy & histology , Pleural Cavity/anatomy & histology , Pneumothorax/etiology , Anatomic Variation , Animals , Humans , Thoracotomy
SELECTION OF CITATIONS
SEARCH DETAIL
...