Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS Negl Trop Dis ; 17(9): e0011621, 2023 09.
Article in English | MEDLINE | ID: mdl-37656766

ABSTRACT

Long-term immune evasion by the African trypanosome is achieved through repetitive cycles of surface protein replacement with antigenically distinct versions of the dense Variant Surface Glycoprotein (VSG) coat. Thousands of VSG genes and pseudo-genes exist in the parasite genome that, together with genetic recombination mechanisms, allow for essentially unlimited immune escape from the adaptive immune system of the host. The diversity space of the "VSGnome" at the protein level was thought to be limited to a few related folds whose structures were determined more than 30 years ago. However, recent progress has shown that the VSGs possess significantly more architectural variation than had been appreciated. Here we combine experimental X-ray crystallography (presenting structures of N-terminal domains of coat proteins VSG11, VSG21, VSG545, VSG558, and VSG615) with deep-learning prediction using Alphafold to produce models of hundreds of VSG proteins. We classify the VSGnome into groups based on protein architecture and oligomerization state, contextualize recent bioinformatics clustering schemes, and extensively map VSG-diversity space. We demonstrate that in addition to the structural variability and post-translational modifications observed thus far, VSGs are also characterized by variations in oligomerization state and possess inherent flexibility and alternative conformations, lending additional variability to what is exposed to the immune system. Finally, these additional experimental structures and the hundreds of Alphafold predictions confirm that the molecular surfaces of the VSGs remain distinct from variant to variant, supporting the hypothesis that protein surface diversity is central to the process of antigenic variation used by this organism during infection.


Subject(s)
Antigenic Variation , Membrane Glycoproteins , Protozoan Proteins , Trypanosoma , Membrane Proteins
2.
Cell Rep ; 42(3): 112262, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36943866

ABSTRACT

The African trypanosome survives the immune response of its mammalian host by antigenic variation of its major surface antigen (the variant surface glycoprotein or VSG). Here we describe the antibody repertoires elicited by different VSGs. We show that the repertoires are highly restricted and are directed predominantly to distinct epitopes on the surface of the VSGs. They are also highly discriminatory; minor alterations within these exposed epitopes confer antigenically distinct properties to these VSGs and elicit different repertoires. We propose that the patterned and repetitive nature of the VSG coat focuses host immunity to a restricted set of immunodominant epitopes per VSG, eliciting a highly stereotyped response, minimizing cross-reactivity between different VSGs and facilitating prolonged immune evasion through epitope variation.


Subject(s)
Trypanosoma brucei brucei , Trypanosoma , Animals , Immunodominant Epitopes , Immune Evasion , Variant Surface Glycoproteins, Trypanosoma , Antigenic Variation , Epitopes , Mammals
3.
PLoS Negl Trop Dis ; 17(2): e0011093, 2023 02.
Article in English | MEDLINE | ID: mdl-36780870

ABSTRACT

During infection of mammalian hosts, African trypanosomes thwart immunity using antigenic variation of the dense Variant Surface Glycoprotein (VSG) coat, accessing a large repertoire of several thousand genes and pseudogenes, and switching to antigenically distinct copies. The parasite is transferred to mammalian hosts by the tsetse fly. In the salivary glands of the fly, the pathogen adopts the metacyclic form and expresses a limited repertoire of VSG genes specific to that developmental stage. It has remained unknown whether the metacyclic VSGs possess distinct properties associated with this particular and discrete phase of the parasite life cycle. We present here three novel metacyclic form VSG N-terminal domain crystal structures (mVSG397, mVSG531, and mVSG1954) and show that they mirror closely in architecture, oligomerization, and surface diversity the known classes of bloodstream form VSGs. These data suggest that the mVSGs are unlikely to be a specialized subclass of VSG proteins, and thus could be poor candidates as the major components of prophylactic vaccines against trypanosomiasis.


Subject(s)
Trypanosoma brucei brucei , Trypanosoma , Trypanosomiasis, African , Tsetse Flies , Animals , Trypanosoma brucei brucei/genetics , Membrane Glycoproteins/metabolism , Variant Surface Glycoproteins, Trypanosoma/genetics , Tsetse Flies/parasitology , Mammals , Trypanosomiasis, African/parasitology
4.
Cell Rep ; 42(2): 112049, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36719797

ABSTRACT

Poorly immunogenic small molecules pose challenges for the production of clinically efficacious vaccines and antibodies. To address this, we generate an immunization platform derived from the immunogenic surface coat of the African trypanosome. Through sortase-based conjugation of the target molecules to the variant surface glycoprotein (VSG) of the trypanosome surface coat, we develop VSG-immunogen array by sortase tagging (VAST). VAST elicits antigen-specific memory B cells and antibodies in a murine model after deploying the poorly immunogenic molecule fentanyl as a proof of concept. We also develop a single-cell RNA sequencing (RNA-seq)-based computational method that synergizes with VAST to specifically identify memory B cell-encoded antibodies. All computationally selected antibodies bind to fentanyl with picomolar affinity. Moreover, these antibodies protect mice from fentanyl effects after passive immunization, demonstrating the ability of these two coupled technologies to elicit therapeutic antibodies to challenging immunogens.


Subject(s)
Trypanosoma brucei brucei , Trypanosoma , Trypanosomiasis, African , Animals , Mice , Trypanosoma brucei brucei/genetics , Trypanosomiasis, African/drug therapy , Analgesics, Opioid , Fentanyl/pharmacology , Fentanyl/therapeutic use , Variant Surface Glycoproteins, Trypanosoma , Immunotherapy
5.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35074910

ABSTRACT

E2F transcription factors are master regulators of the eukaryotic cell cycle. In Drosophila, the sole activating E2F, E2F1, is both required for and sufficient to promote G1→S progression. E2F1 activity is regulated both by binding to RB Family repressors and by posttranscriptional control of E2F1 protein levels by the EGFR and TOR signaling pathways. Here, we investigate cis-regulatory elements in the E2f1 messenger RNA (mRNA) that enable E2f1 translation to respond to these signals and promote mitotic proliferation of wing imaginal disc and intestinal stem cells. We show that small upstream open reading frames (uORFs) in the 5' untranslated region (UTR) of the E2f1 mRNA limit its translation, impacting rates of cell proliferation. E2f1 transgenes lacking these 5'UTR uORFs caused TOR-independent expression and excess cell proliferation, suggesting that TOR activity can bypass uORF-mediated translational repression. EGFR signaling also enhanced translation but through a mechanism less dependent on 5'UTR uORFs. Further, we mapped a region in the E2f1 mRNA that contains a translational enhancer, which may also be targeted by TOR signaling. This study reveals translational control mechanisms through which growth signaling regulates cell cycle progression.


Subject(s)
Cell Cycle/genetics , Drosophila Proteins/metabolism , Drosophila/genetics , Drosophila/metabolism , Gene Expression Regulation , Protein Biosynthesis , Transcription Factors/metabolism , Animals , Biomarkers , Cell Proliferation , Fluorescent Antibody Technique , Mitosis , Open Reading Frames , RNA Processing, Post-Transcriptional , Stress, Physiological/genetics , Untranslated Regions , Wings, Animal/metabolism
6.
Cell Rep ; 37(5): 109923, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34731611

ABSTRACT

The dense variant surface glycoprotein (VSG) coat of African trypanosomes represents the primary host-pathogen interface. Antigenic variation prevents clearing of the pathogen by employing a large repertoire of antigenically distinct VSG genes, thus neutralizing the host's antibody response. To explore the epitope space of VSGs, we generate anti-VSG nanobodies and combine high-resolution structural analysis of VSG-nanobody complexes with binding assays on living cells, revealing that these camelid antibodies bind deeply inside the coat. One nanobody causes rapid loss of cellular motility, possibly due to blockage of VSG mobility on the coat, whose rapid endocytosis and exocytosis are mechanistically linked to Trypanosoma brucei propulsion and whose density is required for survival. Electron microscopy studies demonstrate that this loss of motility is accompanied by rapid formation and shedding of nanovesicles and nanotubes, suggesting that increased protein crowding on the dense membrane can be a driving force for membrane fission in living cells.


Subject(s)
Cell Membrane/drug effects , Cell Movement/drug effects , Single-Domain Antibodies/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/drug therapy , Variant Surface Glycoproteins, Trypanosoma/immunology , Animals , Antibody Specificity , Binding Sites, Antibody , Camelids, New World/immunology , Cell Line , Cell Membrane/immunology , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Endocytosis/drug effects , Epitopes , Exocytosis/drug effects , Protein Binding , Single-Domain Antibodies/immunology , Single-Domain Antibodies/metabolism , Trypanocidal Agents/immunology , Trypanocidal Agents/metabolism , Trypanosoma brucei brucei/immunology , Trypanosoma brucei brucei/metabolism , Trypanosoma brucei brucei/ultrastructure , Trypanosomiasis, African/immunology , Trypanosomiasis, African/metabolism , Trypanosomiasis, African/parasitology , Variant Surface Glycoproteins, Trypanosoma/metabolism
7.
Traffic ; 22(8): 274-283, 2021 08.
Article in English | MEDLINE | ID: mdl-34101314

ABSTRACT

African trypanosomes cause disease in humans and livestock, avoiding host immunity by changing the expression of variant surface glycoproteins (VSGs); the major glycosylphosphatidylinositol (GPI) anchored antigens coating the surface of the bloodstream stage. Proper trafficking of VSGs is therefore critical to pathogen survival. The valence model argues that GPI anchors regulate progression and fate in the secretory pathway and that, specifically, a valence of two (VSGs are dimers) is critical for stable cell surface association. However, recent reports that the MITat1.3 (M1.3) VSG N-terminal domain (NTD) behaves as a monomer in solution and in a crystal structure challenge this model. We now show that the behavior of intact M1.3 VSG in standard in vivo trafficking assays is consistent with an oligomer. Nevertheless, Blue Native Gel electrophoresis and size exclusion chromatography-multiangle light scattering chromatography of purified full length M1.3 VSG indicates a monomer in vitro. However, studies with additional VSGs show that multiple oligomeric states are possible, and that for some VSGs oligomerization is concentration dependent. These data argue that individual VSG monomers possess different propensities to self-oligomerize, but that when constrained at high density to the cell surface, oligomeric species predominate. These results resolve the apparent conflict between the valence hypothesis and the M1.3 NTD VSG crystal structure.


Subject(s)
Trypanosoma brucei brucei , Variant Surface Glycoproteins, Trypanosoma , Cell Membrane , Glycosylphosphatidylinositols , Membrane Glycoproteins , Variant Surface Glycoproteins, Trypanosoma/genetics
8.
Viruses ; 13(5)2021 04 24.
Article in English | MEDLINE | ID: mdl-33923338

ABSTRACT

The emerging SARS-CoV-2 pandemic entails an urgent need for specific and sensitive high-throughput serological assays to assess SARS-CoV-2 epidemiology. We, therefore, aimed at developing a fluorescent-bead based SARS-CoV-2 multiplex serology assay for detection of antibody responses to the SARS-CoV-2 proteome. Proteins of the SARS-CoV-2 proteome and protein N of SARS-CoV-1 and common cold Coronaviruses (ccCoVs) were recombinantly expressed in E. coli or HEK293 cells. Assay performance was assessed in a COVID-19 case cohort (n = 48 hospitalized patients from Heidelberg) as well as n = 85 age- and sex-matched pre-pandemic controls from the ESTHER study. Assay validation included comparison with home-made immunofluorescence and commercial enzyme-linked immunosorbent (ELISA) assays. A sensitivity of 100% (95% CI: 86-100%) was achieved in COVID-19 patients 14 days post symptom onset with dual sero-positivity to SARS-CoV-2 N and the receptor-binding domain of the spike protein. The specificity obtained with this algorithm was 100% (95% CI: 96-100%). Antibody responses to ccCoVs N were abundantly high and did not correlate with those to SARS-CoV-2 N. Inclusion of additional SARS-CoV-2 proteins as well as separate assessment of immunoglobulin (Ig) classes M, A, and G allowed for explorative analyses regarding disease progression and course of antibody response. This newly developed SARS-CoV-2 multiplex serology assay achieved high sensitivity and specificity to determine SARS-CoV-2 sero-positivity. Its high throughput ability allows epidemiologic SARS-CoV-2 research in large population-based studies. Inclusion of additional pathogens into the panel as well as separate assessment of Ig isotypes will furthermore allow addressing research questions beyond SARS-CoV-2 sero-prevalence.


Subject(s)
Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibody Formation , COVID-19/blood , COVID-19/virology , Cohort Studies , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , Enzyme-Linked Immunosorbent Assay , Escherichia coli , Female , HEK293 Cells , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Open Reading Frames , Pandemics , Phosphoproteins , Proteome/immunology , SARS-CoV-2/genetics , Young Adult
9.
Nat Microbiol ; 6(3): 392-400, 2021 03.
Article in English | MEDLINE | ID: mdl-33462435

ABSTRACT

Suramin has been a primary early-stage treatment for African trypanosomiasis for nearly 100 yr. Recent studies revealed that trypanosome strains that express the variant surface glycoprotein (VSG) VSGsur possess heightened resistance to suramin. Here, we show that VSGsur binds tightly to suramin but other VSGs do not. By solving high-resolution crystal structures of VSGsur and VSG13, we also demonstrate that these VSGs define a structurally divergent subgroup of the coat proteins. The co-crystal structure of VSGsur with suramin reveals that the chemically symmetric drug binds within a large cavity in the VSG homodimer asymmetrically, primarily through contacts of its central benzene rings. Structure-based, loss-of-contact mutations in VSGsur significantly decrease the affinity to suramin and lead to a loss of the resistance phenotype. Altogether, these data show that the resistance phenotype is dependent on the binding of suramin to VSGsur, establishing that the VSG proteins can possess functionality beyond their role in antigenic variation.


Subject(s)
Drug Resistance/immunology , Suramin/metabolism , Trypanosoma brucei rhodesiense/immunology , Variant Surface Glycoproteins, Trypanosoma/chemistry , Variant Surface Glycoproteins, Trypanosoma/metabolism , Antigenic Variation/drug effects , Antigenic Variation/immunology , Binding Sites , Crystallography, X-Ray , Drug Resistance/genetics , Endocytosis/genetics , Immune Evasion , Mutation , Protein Binding , Protein Conformation , Suramin/toxicity , Trypanocidal Agents/metabolism , Trypanocidal Agents/toxicity , Trypanosoma brucei rhodesiense/chemistry , Trypanosoma brucei rhodesiense/drug effects , Trypanosoma brucei rhodesiense/metabolism , Trypanosomiasis, African/parasitology , Variant Surface Glycoproteins, Trypanosoma/genetics
10.
Cell Rep ; 7(2): 588-598, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24726363

ABSTRACT

One promising approach for in vivo studies of cell proliferation is the FUCCI system (fluorescent ubiquitination-based cell cycle indicator). Here, we report the development of a Drosophila-specific FUCCI system (Fly-FUCCI) that allows one to distinguish G1, S, and G2 phases of interphase. Fly-FUCCI relies on fluorochrome-tagged degrons from the Cyclin B and E2F1 proteins, which are degraded by the ubiquitin E3-ligases APC/C and CRL4(Cdt2), during mitosis or the onset of S phase, respectively. These probes can track cell-cycle patterns in cultured Drosophila cells, eye and wing imaginal discs, salivary glands, the adult midgut, and probably other tissues. To support a broad range of experimental applications, we have generated a toolkit of transgenic Drosophila lines that express the Fly-FUCCI probes under control of the UASt, UASp, QUAS, and ubiquitin promoters. The Fly-FUCCI system should be a valuable tool for visualizing cell-cycle activity during development, tissue homeostasis, and neoplastic growth.


Subject(s)
Cell Cycle , Cell Proliferation , Drosophila/cytology , Microscopy, Fluorescence/methods , Ubiquitination , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Animals , Cell Line , Cyclin B/genetics , Cyclin B/metabolism , Drosophila/genetics , Drosophila/metabolism , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , Organ Specificity
11.
Nature ; 480(7375): 123-7, 2011 Oct 30.
Article in English | MEDLINE | ID: mdl-22037307

ABSTRACT

Endocycles are variant cell cycles comprised of DNA synthesis (S)- and gap (G)-phases but lacking mitosis. Such cycles facilitate post-mitotic growth in many invertebrate and plant cells, and are so ubiquitous that they may account for up to half the world's biomass. DNA replication in endocycling Drosophila cells is triggered by cyclin E/cyclin dependent kinase 2 (CYCE/CDK2), but this kinase must be inactivated during each G-phase to allow the assembly of pre-Replication Complexes (preRCs) for the next S-phase. How CYCE/CDK2 is periodically silenced to allow re-replication has not been established. Here, using genetic tests in parallel with computational modelling, we show that the endocycles of Drosophila are driven by a molecular oscillator in which the E2F1 transcription factor promotes CycE expression and S-phase initiation, S-phase then activates the CRL4(CDT2) ubiquitin ligase, and this in turn mediates the destruction of E2F1 (ref. 7). We propose that it is the transient loss of E2F1 during S phases that creates the window of low Cdk activity required for preRC formation. In support of this model overexpressed E2F1 accelerated endocycling, whereas a stabilized variant of E2F1 blocked endocycling by deregulating target genes, including CycE, as well as Cdk1 and mitotic cyclins. Moreover, we find that altering cell growth by changing nutrition or target of rapamycin (TOR) signalling impacts E2F1 translation, thereby making endocycle progression growth-dependent. Many of the regulatory interactions essential to this novel cell cycle oscillator are conserved in animals and plants, indicating that elements of this mechanism act in most growth-dependent cell cycles.


Subject(s)
Cell Cycle/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/enzymology , E2F Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Female , Male , S Phase/physiology , Salivary Glands/cytology , Transcription Factors , Ubiquitin-Protein Ligase Complexes
SELECTION OF CITATIONS
SEARCH DETAIL
...