Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Biochem J ; 341 ( Pt 2): 401-8, 1999 Jul 15.
Article in English | MEDLINE | ID: mdl-10393099

ABSTRACT

The roles of a subregion of the endoplasmic reticulum (ER) and the cortical actin cytoskeleton in the mechanisms by which Ins(1,4,5)P3 induces the activation of store-operated Ca2+ channels (SOCs) in isolated rat hepatocytes were investigated. Adenophostin A, a potent agonist at Ins(1,4,5)P3 receptors, induced ER Ca2+ release and the activation of Ca2+ inflow. The concentration of adenophostin A that gave half-maximal stimulation of Ca2+ inflow (10 nM) was substantially lower than that (20 nM) which gave half-maximal ER Ca2+ release. A low concentration of adenophostin A (approx. 13 nM) caused near-maximal stimulation of Ca2+ inflow but only 20% of maximal ER Ca2+ release. Similar results were obtained using another Ins(1,4,5)P3-receptor agonist, 2-hydroxyethyl-alpha-d-glucopyranoside 2,3',4'-trisphosphate. Anti-type-1 Ins(1,4,5)P3-receptor monoclonal antibody 18A10 inhibited vasopressin-stimulated Ca2+ inflow but had no observable effect on vasopressin-induced ER Ca2+ release. Treatment with cytochalasin B at a concentration that partially disrupted the cortical actin cytoskeleton inhibited Ca2+ inflow and ER Ca2+ release induced by vasopressin by 73 and 45%, respectively. However, it did not substantially affect Ca2+ inflow and ER Ca2+ release induced by thapsigargin or 13 nM adenophostin A, intracellular Ca2+ release induced by ionomycin or Ins(1,4, 5)P3P4(5)-1-(2-nitrophenyl)ethyl ester ['caged' Ins(1,4,5)P3] or basal Ca2+ inflow. 1-(5-Chloronaphthalene-1-sulphonyl)homopiperazine, HCl (ML-9), an inhibitor of myosin light-chain kinase, also inhibited vasopressin-induced Ca2+ inflow and ER Ca2+ release by 53 and 44%, respectively, but had little effect on thapsigargin-induced Ca2+ inflow and ER Ca2+ release. Neither cytochalasin B nor ML-9 inhibited vasopressin-induced Ins(1,4,5)P3 formation. It is concluded that the activation of SOCs in rat hepatocytes induced by Ins(1,4,5)P3 requires the participation of a small region of the ER, which is distinguished from other regions of the ER by a different apparent affinity for Ins(1,4,5)P3 analogues and is associated with the plasma membrane through the actin skeleton. This conclusion is discussed briefly in relation to current hypotheses for the activation of SOCs.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Liver/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Cells, Cultured , Endoplasmic Reticulum/ultrastructure , Inositol 1,4,5-Trisphosphate/metabolism , Inositol 1,4,5-Trisphosphate Receptors , Ion Transport , Liver/ultrastructure , Rats , Rats, Wistar , Signal Transduction
3.
Mol Pharmacol ; 55(1): 109-17, 1999 Jan.
Article in English | MEDLINE | ID: mdl-9882704

ABSTRACT

Adenophostin A is the most potent known agonist of D-myo-inositol 1, 4,5-trisphosphate [Ins(1,4,5)P3] receptors. Equilibrium competition binding studies with 3H-Ins(1,4,5)P3 showed that the interaction of a totally synthetic adenophostin A with both hepatic and cerebellar Ins(1,4,5)P3 receptors was indistinguishable from that of the natural product. At pH 8.3, a synthetic analog of adenophostin A (which we named acyclophostin), in which most elements of the ribose ring have been removed, bound with substantially higher affinity (Kd = 2.76 +/- 0.26 nM) than Ins(1,4,5)P3 (Kd = 7.96 +/- 1.02 nM) to the 3H-Ins(1,4,5)P3-binding sites of hepatic membranes. At pH 7, acyclophostin (EC50 = 209 +/- 12 nM) and Ins(1,4,5)P3 (EC50 = 153 +/- 11 nM) stimulated 45Ca++ release to the same maximal extent and from the same intracellular stores of permeabilized hepatocytes. Comparison of the affinities of a range of Ins(1,4,5)P3 and adenophostin analogs with their abilities to stimulate Ca++ release revealed that although all other agonists had similar EC50/Kd ratios, that for acyclophostin was significantly higher. Similar results were obtained with cerebellar membranes, which express almost entirely type 1 InsP3 receptors. When the radioligand binding and functional assays of hepatocytes were performed under identical conditions, the higher EC50/Kd ratio for acyclophostin was retained at pH 8.3, but it was similar to that for Ins(1,4,5)P3 when the assays were performed at pH 7. To directly assess whether acyclophostin was a partial agonist of hepatic Ins(1,4,5)P3 receptors, the kinetics of 45Ca++ efflux from permeabilized hepatocytes was measured with a temporal resolution of 80 ms using rapid superfusion. At pH 7, the kinetics of 45Ca++ release, including the maximal rate of release, evoked by maximal concentrations of acyclophostin or Ins(1,4,5)P3 were indistinguishable. At pH 8.3, however, the maximal rate of 45Ca++ release evoked by a supramaximal concentration of acyclophostin was only 69 +/- 7% of that evoked by Ins(1,4,5)P3. We conclude that acyclophostin is the highest affinity ribose-modified analog of adenophostin so far synthesized, that at high pH it is a partial agonist of inositol trisphosphate receptors, and that it may provide a structure from which to develop high-affinity antagonists of inositol trisphosphate receptors.


Subject(s)
Adenosine/analogs & derivatives , Calcium Channels/chemistry , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/chemistry , Adenosine/chemistry , Adenosine/pharmacology , Animals , Brain/drug effects , Calcium/metabolism , Hydrogen-Ion Concentration , Inositol 1,4,5-Trisphosphate Receptors , Liver/cytology , Liver/drug effects , Male , Rats , Rats, Wistar , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...