Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mycopathologia ; 188(6): 845-862, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37294505

ABSTRACT

Fungi are an essential part of the normal collection of intestinal microorganisms, even though their collective abundance comprises only 0.1-1% of all fecal microbes. The composition and role of the fungal population is often studied in relation to early-life microbial colonization and development of the (mucosal) immune system. The genus Candida is frequently described as one of the most abundant genera, and altered fungal compositions (including elevated abundance of Candida spp.) have been linked with intestinal diseases such as inflammatory bowel disease and irritable bowel syndrome. These studies are performed using both culture-dependent and genomic (metabarcoding) techniques. In this review, we aimed to summarize existing data on intestinal Candida spp. colonization in relation to intestinal disease and provide a brief overview of the biological and technical challenges in this field, including the recently described role of sub-species strain variation of intestinal Candida albicans. Together, the evidence for a contributing role of Candida spp. in pediatric and adult intestinal disease is quickly expanding, even though technical and biological challenges may limit full understanding of host-microbe interactions.


Subject(s)
Candida , Intestinal Diseases , Adult , Humans , Child , Candida/genetics , Candida albicans/genetics , Genomics
2.
Microorganisms ; 10(4)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35456788

ABSTRACT

Fecal microbiota transplantation (FMT) has the potential to restore (bacterial and fungal) microbial imbalance in ulcerative colitis (UC) patients and contribute to disease remission. Here, we aimed to identify fecal fungal species associated with the induction of clinical remission and endoscopic response to FMT for patients with mild-to-moderate ulcerative colitis. We analyzed the internal transcribed spacer 1 (ITS1)-based mycobiota composition in fecal samples from patients (n = 31) and donors (n = 7) that participated previously in a double-blinded randomized control trial evaluating the efficacy of two infusions of donor FMT compared with autologous FMT. The abundance of the yeast genus Filobasidium in fecal material used for transplantation was shown to correlate with clinical remission following FMT, irrespective of its presence in the material of donor or autologous fecal microbiota transfer. The amplified sequence variants within the genus Filobasidium most closely resembled Filobasidium magnum. Monocyte-derived macrophages and HT29 epithelial cells were stimulated with fungal species. Especially Filobasidium floriforme elicited an IL10 response in monocyte-derived macrophages, along with secretion of other cytokines following stimulation with other Filobasidium species. No effect of Filobasidium spp. was seen on epithelial wound healing in scratch assays. In conclusion, the enriched presence of Filobasidium spp. in donor feces is associated with the positive response to FMT for patients with UC and hence it may serve as a predictive fungal biomarker for successful FMT.

3.
Sci Rep ; 12(1): 5391, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35354908

ABSTRACT

Irritable bowel syndrome (IBS) is a common disorder characterized by chronic abdominal pain and changes in bowel movements. Visceral hypersensitivity is thought to be responsible for pain complaints in a subset of patients. In an IBS-like animal model, visceral hypersensitivity was triggered by intestinal fungi, and lower mycobiota α-diversity in IBS patients was accompanied by a shift toward increased presence of Candida albicans and Saccharomyces cerevisiae. Yet, this shift was observed in hypersensitive as well as normosensitive patients and diversity did not differ between IBS subgroups. The latter suggests that, when a patient changes from hyper- to normosensitivity, the relevance of intestinal fungi is not necessarily reflected in compositional mycobiota changes. We now confirmed this notion by performing ITS1 sequencing on an existing longitudinal set of fecal samples. Since ITS1 methodology does not recognize variations within species, we next focused on heterogeneity within cultured healthy volunteer and IBS-derived C. albicans strains. We observed inter- and intra-individual genomic variation and partial clustering of strains from hypersensitive patients. Phenotyping showed differences related to growth, yeast-to-hyphae morphogenesis and gene expression, specifically of the gene encoding fungal toxin candidalysin. Our investigations emphasize the need for strain-specific cause-and-effect studies within the realm of IBS research.


Subject(s)
Candida albicans , Irritable Bowel Syndrome , Abdominal Pain/complications , Animals , Candida albicans/genetics , Feces/microbiology , Humans , Intestines , Irritable Bowel Syndrome/microbiology
4.
Am J Physiol Gastrointest Liver Physiol ; 318(6): G1034-G1041, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32308040

ABSTRACT

Visceral hypersensitivity of the lower gastrointestinal tract, defined as an increased response to colorectal distension, frequently prompts episodes of debilitating abdominal pain in irritable bowel syndrome (IBS). Although the pathophysiology of IBS is not yet fully elucidated, it is well known that stress is a major risk factor for development and acts as a trigger of pain sensation. Stress modulates both immune responses as well as the gut microbiota and vice versa. Additionally, either microbes themselves or through involvement of the immune system, activate or sensitize afferent nociceptors. In this paper, we review current knowledge on the influence of stress along the gut-brain-microbiota axis and exemplify relevant neuroimmune cross talk mechanisms in visceral hypersensitivity, working toward understanding how gut microbiota-neuroimmune cross talk contributes to visceral pain sensation in IBS patients.


Subject(s)
Gastrointestinal Microbiome , Gastrointestinal Tract/innervation , Gastrointestinal Tract/microbiology , Stress, Psychological , Humans , Irritable Bowel Syndrome/microbiology , Irritable Bowel Syndrome/pathology , Pain
5.
Sci Rep ; 9(1): 12530, 2019 08 29.
Article in English | MEDLINE | ID: mdl-31467355

ABSTRACT

Irritable bowel syndrome (IBS) is a heterogenic, functional gastrointestinal disorder of the gut-brain axis characterized by altered bowel habit and abdominal pain. Preclinical and clinical results suggested that, in part of these patients, pain may result from fungal induced release of mast cell derived histamine, subsequent activation of sensory afferent expressed histamine-1 receptors and related sensitization of the nociceptive transient reporter potential channel V1 (TRPV1)-ion channel. TRPV1 gating properties are regulated in lipid rafts. Miltefosine, an approved drug for the treatment of visceral Leishmaniasis, has fungicidal effects and is a known lipid raft modulator. We anticipated that miltefosine may act on different mechanistic levels of fungal-induced abdominal pain and may be repurposed to IBS. In the IBS-like rat model of maternal separation we assessed the visceromotor response to colonic distension as indirect readout for abdominal pain. Miltefosine reversed post-stress hypersensitivity to distension (i.e. visceral hypersensitivity) and this was associated with differences in the fungal microbiome (i.e. mycobiome). In vitro investigations confirmed fungicidal effects of miltefosine. In addition, miltefosine reduced the effect of TRPV1 activation in TRPV1-transfected cells and prevented TRPV1-dependent visceral hypersensitivity induced by intracolonic-capsaicin in rat. Miltefosine may be an attractive drug to treat abdominal pain in IBS.


Subject(s)
Abdominal Pain/drug therapy , Antifungal Agents/administration & dosage , Irritable Bowel Syndrome/drug therapy , Phosphorylcholine/analogs & derivatives , Abdominal Pain/metabolism , Abdominal Pain/microbiology , Abdominal Pain/psychology , Animals , Female , Fungi/drug effects , Fungi/physiology , Gastrointestinal Microbiome/drug effects , Humans , Irritable Bowel Syndrome/metabolism , Irritable Bowel Syndrome/microbiology , Irritable Bowel Syndrome/psychology , Male , Maternal Deprivation , Mycobiome/drug effects , Phosphorylcholine/administration & dosage , Rats , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...