Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Mycorrhiza ; 33(5-6): 369-385, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37561219

ABSTRACT

Arbuscular mycorrhizal symbiosis improves water and nutrient uptake by plants and provides them other ecosystem services. Grapevine is one of the major crops in the world. Vitis vinifera scions generally are grafted onto a variety of rootstocks that confer different levels of resistance against different pests, tolerance to environmental stress, and influence the physiology of the scions. Arbuscular mycorrhizal fungi are involved in the root architecture and in the immune response to soil-borne pathogens. However, the fine-tuned regulation and the transcriptomic plasticity of rootstocks in response to mycorrhization are still unknown. We compared the responses of 10 different grapevine rootstocks to arbuscular mycorrhizal symbiosis (AMS) formed with Rhizophagus irregularis DAOM197198 using RNA sequencing-based transcriptome profiling. We have highlighted a few shared regulation mechanisms, but also specific rootstock responses to R. irregularis colonization. A set of 353 genes was regulated by AMS in all ten rootstocks. We also compared the expression level of this set of genes to more than 2000 transcriptome profiles from various grapevine varieties and tissues to identify a class of transcripts related to mycorrhizal associations in these 10 rootstocks. Then, we compared the response of the 351 genes upregulated by mycorrhiza in grapevine to their Medicago truncatula homologs in response to mycorrhizal colonization based on available transcriptomic studies. More than 97% of the 351 M. truncatula-homologous grapevine genes were expressed in at least one mycorrhizal transcriptomic study, and 64% in every single RNAseq dataset. At the intra-specific level, we described, for the first time, shared and specific grapevine rootstock genes in response to R. irregularis symbiosis. At the inter-specific level, we defined a shared subset of mycorrhiza-responsive genes.


Subject(s)
Mycorrhizae , Mycorrhizae/physiology , Symbiosis/physiology , Ecosystem , Plant Roots/microbiology , Gene Expression Profiling , Transcriptome , Sequence Analysis, RNA
2.
Mycorrhiza ; 33(4): 241-248, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37450046

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) are key organisms in viticultural ecosystems as they provide many ecosystem services to soils and plants. Data about AMF community dynamics over time are relatively scarce and at short time scales. Many factors such as the soil, climate, and agricultural practices could modify the dynamics and functions of microbial communities. However, the effects on microbial communities of plant phenology and changes in plant physiology over time largely have been overlooked. We analyzed the diversity of AMF in three geographically close vineyards with similar soil parameters for 2 years. The plots differed in grapevine age (11, 36, and 110 years), but had the same soil management practice (horse tillage). Diversity analyses revealed a difference in the composition of AMF communities between the soil and grapevine roots and among roots of grapevines of different ages. This underlines AMF adaptation to physiological changes in the host which can explain the development of different AMF communities. The dynamics of AMF communities can highlight their resilience to environmental changes and agricultural practices.


Subject(s)
Mycobiome , Mycorrhizae , Animals , Horses , Ecosystem , Farms , Plant Roots/microbiology , Soil , Plants/microbiology , Soil Microbiology
4.
Ecotoxicol Environ Saf ; 234: 113390, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35278990

ABSTRACT

Arbuscular mycorrhizal (AM) fungi, symbionts of most land plants, increase plant fitness in metal contaminated soils. To further understand the mechanisms of metal tolerance in the AM symbiosis, the expression patterns of the maize Heavy Metal ATPase (HMA) family members and the ionomes of non-mycorrhizal and mycorrhizal plants grown under different Cu supplies were examined. Expression of ZmHMA5a and ZmHMA5b, whose encoded proteins were predicted to be localized at the plasma membrane, was up-regulated by Cu in non-mycorrhizal roots and to a lower extent in mycorrhizal roots. Gene expression of the tonoplast ZmHMA3a and ZmHMA4 isoforms was up-regulated by Cu-toxicity in shoots and roots of mycorrhizal plants. AM mitigates the changes induced by Cu toxicity on the maize ionome, specially at the highest Cu soil concentration. Altogether these data suggest that in Cu-contaminated soils, AM increases expression of the HMA genes putatively encoding proteins involved in Cu detoxification and balances mineral nutrient uptake improving the nutritional status of the maize plants.

5.
Mycorrhiza ; 31(6): 655-669, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34633544

ABSTRACT

Modern agriculture is currently undergoing rapid changes in the face of the continuing growth of world population and many ensuing environmental challenges. Crop quality is becoming as important as crop yield and can be characterised by several parameters. For fruits and vegetables, quality descriptors can concern production cycle (e.g. conventional or organic farming), organoleptic qualities (e.g. sweet taste, sugar content, acidity) and nutritional qualities (e.g. mineral content, vitamins). For other crops, however, the presence of secondary metabolites such as anthocyanins or certain terpenes in the targeted tissues is of interest as well, especially for their human health properties. All plants are constantly interacting with microorganisms. These microorganisms include arbuscular mycorrhizal fungi as well as certain soil bacteria that provide ecosystem services related to plant growth, nutrition and quality parameters. This review is an update of current research on the single and combined (co-inoculation) use of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria in crop production, with a focus on their positive impacts on crop quality traits (e.g. nutritional value, organoleptic properties). We also highlight the need to dissect mechanisms regulating plant-symbionts and symbiont-symbiont interactions, to develop farming practices and to study a broad range of interactions to optimize the symbiotic potential of root-associated microorganisms.


Subject(s)
Mycorrhizae , Anthocyanins , Bacteria , Crop Production , Crops, Agricultural , Ecosystem , Plant Roots , Symbiosis
6.
Mycorrhiza ; 31(6): 637-653, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34657204

ABSTRACT

Arbuscular mycorrhiza, one of the oldest interactions on earth (~ 450 million years old) and a first-class partner for plants to colonize emerged land, is considered one of the most pervasive ecological relationships on the globe. Despite how important and old this interaction is, its discovery was very recent compared to the long story of land plant evolution. The story of the arbuscular mycorrhiza cannot be addressed apart from the history, controversies, and speculations about mycorrhiza in its broad sense. The chronicle of mycorrhizal research is marked by multiple key milestones such as the initial description of a "persistent epiderm and pellicular wall structure" by Hartig; the introduction of the "Symbiotismus" and "Mycorrhiza" concepts by Frank; the description of diverse root-fungal morphologies; the first description of arbuscules by Gallaud; Mosse's pivotal statement of the beneficial nature of the arbuscular mycorrhizal symbiosis; the impact of molecular tools on the taxonomy of mycorrhizal fungi as well as the development of in vitro root organ cultures for producing axenic arbuscular mycorrhizal fungi (AMF). An appreciation of the story - full of twists and turns - of the arbuscular mycorrhiza, going from the roots of mycorrhiza history, along with the discovery of different mycorrhiza types such as ectomycorrhiza, can improve research to help face our days' challenge of developing sustainable agriculture that integrates the arbuscular mycorrhiza and its ecosystem services.


Subject(s)
Mycorrhizae , Agriculture , Ecosystem , Plant Roots , Plants , Symbiosis
7.
Folia Microbiol (Praha) ; 66(3): 371-384, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33534036

ABSTRACT

Crop inoculation with Glomus cubense isolate (INCAM-4, DAOM-241198) promotes yield in banana, cassava, forages, and others. Yield improvements range from 20 to 80% depending on crops, nutrient supply, and edaphoclimatic conditions. However, it is difficult to connect yield effects with G. cubense abundance in roots due to the lack of an adequate methodology to trace this taxon in the field. It is necessary to establish an accurate evaluation framework of its contribution to root colonization separated from native arbuscular mycorrhizal fungi (AMF). A taxon-discriminating primer set was designed based on the ITS nrDNA marker and two molecular approaches were optimized and validated (endpoint PCR and quantitative real-time PCR) to trace and quantify the G. cubense isolate in root and soil samples under greenhouse and environmental conditions. The detection limit and specificity assays were performed by both approaches. Different 18 AMF taxa were used for endpoint PCR specificity assay, showing that primers specifically amplified the INCAM-4 isolate yielding a 370 bp-PCR product. In the greenhouse, Urochloa brizantha plants inoculated with three isolates (Rhizophagus irregularis, R. clarus, and G. cubense) and environmental root and soil samples were successfully traced and quantified by qPCR. The AMF root colonization reached 41-70% and the spore number 4-128 per g of soil. This study demonstrates for the first time the feasibility to trace and quantify the G. cubense isolate using a taxon-discriminating ITS marker in roots and soils. The validated approaches reveal their potential to be used for the quality control of other mycorrhizal inoculants and their relative quantification in agroecosystems.


Subject(s)
Genetic Markers , Mycorrhizae , Soil Microbiology , Fungi/genetics , Genetic Markers/genetics , Glomeromycota/genetics , Mycorrhizae/genetics , Plant Roots/microbiology , Poaceae/microbiology , Polymerase Chain Reaction
8.
Mycorrhiza ; 30(1): 171, 2020 01.
Article in English | MEDLINE | ID: mdl-32025891

ABSTRACT

The authors of the above-mentioned published article inadvertently omitted Dirk Redecker, Dioumacor Fall and Diaminatou Sanogo from the list of authors. The names and their affiliations presented in this paper.

9.
New Phytol ; 223(3): 1127-1142, 2019 08.
Article in English | MEDLINE | ID: mdl-30843207

ABSTRACT

Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients between host plants and AM fungi (AMF) is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation). First, we focus on phosphorus and nitrogen transfer from the fungal partner to the host plant, and on the reciprocal transfer of carbon compounds, with a highlight on a possible interplay between nitrogen and phosphorus nutrition during AM symbiosis. We further discuss potential mechanisms of regulation of these nutrient exchanges linked to membrane dynamics. The review finally addresses the common mycorrhizal networks formed AMF, which interconnect plants from similar and/or different species. Finally the best way to integrate this knowledge and the ensuing potential benefits of AM into sustainable agriculture is discussed.


Subject(s)
Commerce , Mycorrhizae/physiology , Agriculture , Nitrogen , Phosphorus , Sustainable Development , Symbiosis
10.
Mycorrhiza ; 29(1): 77-83, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30460497

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) play a major role as biofertilizer for sustainable agriculture. Nevertheless, it is still poorly documented whether inoculated AMF can successfully establish in field soils as exotic AMF and improve plant growth and productivity. Further, the fate of an exogenous inoculum is still poorly understood. Here, we pre-inoculated two cultivars (Tasset and Gola) of the fruit tree Ziziphus mauritiana (jujube) with the exotic AM fungus Rhizophagus irregularis isolate IR27 before transplantation in the field. In two experiments, tracking and quantification of R. irregularis IR27 were assessed in a 13-month-old jujube and an 18-month-old jujube in two fields located in Senegal. Our results showed that the inoculant R. irregularis IR27 was quantitatively traced and discriminated from native R. irregularis isolates in roots by using a qPCR assay targeting a fragment of the RNA polymerase II gene (RPB1), and that the inoculum represented only fractions ranging from 11 to 15% of the Rhizophagus genus in the two plantations 13 and 18 months after transplantation, respectively. This study validates the use of the RPB1 gene as marker for a relative quantification of a mycorrhizal inoculant fungus isolate in the field.


Subject(s)
Glomeromycota/physiology , Mycorrhizae/physiology , Ziziphus/microbiology , Amino Acid Sequence , Fungal Proteins/analysis , RNA Polymerase II/analysis , Senegal , Sequence Alignment
11.
Front Microbiol ; 8: 2228, 2017.
Article in English | MEDLINE | ID: mdl-29209286

ABSTRACT

Plants interact with microbes whose ultimate aim is to exploit plant carbohydrates for their reproduction. Plant-microbe interactions (PMIs) are classified according to the nature of their trophic exchanges: while mutualistic microbes trade nutrients with plants, pathogens unilaterally divert carbohydrates. The early responses following microbe recognition and the subsequent control of plant sugar distribution are still poorly understood. To further decipher PMI functionality, we used tobacco cells treated with microbial molecules mimicking pathogenic or mutualistic PMIs, namely cryptogein, a defense elicitor, and chitotetrasaccharide (CO4), which is secreted by mycorrhizal fungi. CO4 was perceived by tobacco cells and triggered widespread transient signaling components such as a sharp cytosolic Ca2+ elevation, NtrbohD-dependent H2O2 production, and MAP kinase activation. These CO4-induced events differed from those induced by cryptogein, i.e., sustained events leading to cell death. Furthermore, cryptogein treatment inhibited glucose and sucrose uptake but not fructose uptake, and promoted the expression of NtSUT and NtSWEET sugar transporters, whereas CO4 had no effect on sugar uptake and only a slight effect on NtSWEET2B expression. Our results suggest that microbial molecules induce different signaling responses that reflect microbial lifestyle and the subsequent outcome of the interaction.

12.
Sci Total Environ ; 577: 84-93, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27817923

ABSTRACT

Pesticide contamination of the environment can result from agricultural practices. Persistence of pesticide residues is a threat to the soil biota including plant roots and beneficial microorganisms, which support an important number of soil ecosystem services. Arbuscular mycorrhizal fungi (AMF) are key symbiotic microorganisms contributing to plant nutrition. In the present study, we assessed whether AMF could indicate eventual side effects of pesticides when directly applied to field soils. We evaluated the ecotoxicological impact of a cocktail of three commonly used agricultural pesticides (fenhexamid, folpel, deltamethrin) on the abundance and composition of the AMF community in vineyard (Montagne de Saint-Emilion) and arable (Martincourt) soils subjected to different agricultural practices. The dissipation of applied pesticides was monitored by multiresidual analyses to determine the scenario of exposure of the AMF community. Diversity analysis before application of the pesticide cocktail showed that the AMF communities of vineyard soils, subjected to mechanical weeding or grass cover, and of the arable soil subjected to intensive agriculture, were dominated by Glomerales. Ribotypes specific to each soil and to each agricultural practice in the same soil were found, with the highest abundance and diversity of AMF being observed in the vineyard soil with a grass-cover. The abundance of the global AMF community (Glomeromycota) and of three taxa of AMF (Funneliformis mosseae, Claroideoglomus etunicatum/C. claroideum) was evaluated after pesticide application. The abundance of Glomeromycota decreased in both soils after pesticide application while the abundance of Claroideoglomus and F. mosseae decreased only in the arable soil. These results show that higher doses of pesticide exposure did not affect the global abundance, but altered the composition, of the AMF community. Resilience of the AMF community composition was observed only in the vineyard soil, where F. mosseae was the most tolerant taxon to pesticide exposure.


Subject(s)
Glomeromycota/growth & development , Pesticides/analysis , Soil Microbiology , Soil/chemistry , Amides , France , Glomeromycota/classification , Mycorrhizae/classification , Mycorrhizae/growth & development , Nitriles , Pyrethrins
13.
Plant Cell Environ ; 38(1): 73-88, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24815324

ABSTRACT

Inorganic phosphate (Pi) plays a key role in the development of arbuscular mycorrhizal (AM) symbiosis, which is favoured when Pi is limiting in the environment. We have characterized the Medicago truncatula hypermycorrhizal B9 mutant for its response to limiting (P/10) and replete (P2) Pi. On P2, mycorrhization was significantly higher in B9 plants than in wild-type (WT). The B9 mutant displayed hallmarks of Pi-limited plants, including higher levels of anthocyanins and lower concentrations of Pi in shoots than WT plants. Transcriptome analyses of roots of WT and B9 plants cultivated on P2 or on P/10 confirmed the Pi-limited profile of the mutant on P2 and highlighted its altered response to Pi on P/10. Furthermore, the B9 mutant displayed a higher expression of defence/stress-related genes and was more susceptible to infection by the root oomycete pathogen Aphanomyces euteiches than WT plants. We propose that the hypermycorrhizal phenotype of the B9 mutant is linked to its Pi-limited status favouring AM symbiosis in contrast to WT plants in Pi-replete conditions, and discuss the possible links between the altered response of the B9 mutant to Pi, mycorrhization and infection by A. euteiches.


Subject(s)
Aphanomyces/physiology , Medicago truncatula/genetics , Mycorrhizae/physiology , Phosphates/metabolism , Signal Transduction , Symbiosis , Anthocyanins/metabolism , Cluster Analysis , Disease Susceptibility , Gene Expression Profiling , Gene Expression Regulation, Plant , Medicago truncatula/immunology , Medicago truncatula/microbiology , Mutation , Oligonucleotide Array Sequence Analysis , Phenotype , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/microbiology , Plant Shoots/genetics , Plant Shoots/immunology , Plant Shoots/microbiology , Transcriptome
14.
Front Plant Sci ; 5: 680, 2014.
Article in English | MEDLINE | ID: mdl-25520732

ABSTRACT

Sulfur plays an essential role in plants' growth and development and in their response to various abiotic and biotic stresses despite its leachability and its very low abundance in the only form that plant roots can uptake (sulfate). It is part of amino acids, glutathione (GSH), thiols of proteins and peptides, membrane sulfolipids, cell walls and secondary products, so reduced availability can drastically alter plant growth and development. The nutritional benefits of symbiotic interactions can help the plant in case of S deficiency. In particular the arbuscular mycorrhizal (AM) interaction improves N, P, and S plant nutrition, but the mechanisms behind these exchanges are not fully known yet. Although the transcriptional changes in the leguminous model plant Medicago truncatula have been already assessed in several biotic and/or abiotic conditions, S deficiency has not been considered so far. The aim of this work is to get a first overview on S-deficiency responses in the leaf and root tissues of plants interacting with the AM fungus Rhizophagus irregularis. Several hundred genes displayed significantly different transcript accumulation levels. Annotation and GO ID association were used to identify biological processes and molecular functions affected by sulfur starvation. Beside the beneficial effects of AM interaction, plants were greatly affected by the nutritional status, showing various differences in their transcriptomic footprints. Several pathways in which S plays an important role appeared to be differentially affected according to mycorrhizal status, with a generally reduced responsiveness to S deficiency in mycorrhized plants.

15.
J Proteomics ; 108: 354-68, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-24925269

ABSTRACT

Arbuscular mycorrhizal (AM) symbiosis that associates roots of most land plants with soil-borne fungi (Glomeromycota), is characterized by reciprocal nutritional benefits. Fungal colonization of plant roots induces massive changes in cortical cells where the fungus differentiates an arbuscule, which drives proliferation of the plasma membrane. Despite the recognized importance of membrane proteins in sustaining AM symbiosis, the root microsomal proteome elicited upon mycorrhiza still remains to be explored. In this study, we first examined the qualitative composition of the root membrane proteome of Medicago truncatula after microsome enrichment and subsequent in depth analysis by GeLC-MS/MS. The results obtained highlighted the identification of 1226 root membrane protein candidates whose cellular and functional classifications predispose plastids and protein synthesis as prevalent organelle and function, respectively. Changes at the protein abundance level between the membrane proteomes of mycorrhizal and nonmycorrhizal roots were further monitored by spectral counting, which retrieved a total of 96 proteins that displayed a differential accumulation upon AM symbiosis. Besides the canonical markers of the periarbuscular membrane, new candidates supporting the importance of membrane trafficking events during mycorrhiza establishment/functioning were identified, including flotillin-like proteins. The data have been deposited to the ProteomeXchange with identifier PXD000875. BIOLOGICAL SIGNIFICANCE: During arbuscular mycorrhizal symbiosis, one of the most widespread mutualistic associations in nature, the endomembrane system of plant roots is believed to undergo qualitative and quantitative changes in order to sustain both the accommodation process of the AM fungus within cortical cells and the exchange of nutrients between symbionts. Large-scale GeLC-MS/MS proteomic analysis of the membrane fractions from mycorrhizal and nonmycorrhizal roots of M. truncatula coupled to spectral counting retrieved around one hundred proteins that displayed changes in abundance upon mycorrhizal establishment. The symbiosis-related membrane proteins that were identified mostly function in signaling/membrane trafficking and nutrient uptake regulation. Besides extending the coverage of the root membrane proteome of M. truncatula, new candidates involved in the symbiotic program emerged from the current study, which pointed out a dynamic reorganization of microsomal proteins during the accommodation of AM fungi within cortical cells.


Subject(s)
Medicago truncatula/metabolism , Membrane Proteins/metabolism , Mycorrhizae/metabolism , Plant Proteins/metabolism , Proteome/metabolism , Symbiosis/physiology , Biological Transport, Active/physiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Medicago truncatula/genetics , Membrane Proteins/genetics , Mycorrhizae/genetics , Plant Proteins/genetics , Proteome/genetics , Signal Transduction/physiology
16.
Proc Natl Acad Sci U S A ; 110(50): 20117-22, 2013 Dec 10.
Article in English | MEDLINE | ID: mdl-24277808

ABSTRACT

The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.


Subject(s)
Evolution, Molecular , Genome, Fungal/genetics , Glomeromycota/genetics , Mycorrhizae/genetics , Plants/microbiology , Symbiosis/genetics , Base Sequence , Molecular Sequence Data , Sequence Analysis, DNA
17.
Fungal Biol ; 117(1): 22-31, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23332830

ABSTRACT

Fluctuations in intracellular calcium levels generate signalling events and regulate different cellular processes. Whilst the implication of Ca(2+) in plant responses during arbuscular mycorrhiza (AM) interactions is well documented, nothing is known about the regulation or role of this secondary messenger in the fungal symbiont. The spatio-temporal expression pattern of putatively Ca(2+)-related genes of Glomus intraradices BEG141 encoding five proteins involved in membrane transport and one nuclear protein kinase, was investigated during the AM symbiosis. Expression profiles related to successful colonization of host roots were observed in interactions of G. intraradices with roots of wild-type Medicago truncatula (line J5) compared to the mycorrhiza-defective mutant dmi3/Mtsym13. Symbiotic fungal activity was monitored using stearoyl-CoA desaturase and phosphate transporter genes. Laser microdissection based-mapping of fungal gene expression in mycorrhizal root tissues indicated that the Ca(2+)-related genes were differentially upregulated in arbuscules and/or in intercellular hyphae. The spatio-temporal variations in gene expression suggest that the encoded proteins may have different functions in fungal development or function during symbiosis development. Full-length cDNA obtained for two genes with interesting expression profiles confirmed a close similarity with an endoplasmic reticulum P-type ATPase and a Vcx1-like vacuolar Ca(2+) ion transporter functionally characterized in other fungi and involved in the regulation of cell calcium pools. Possible mechanisms are discussed in which Ca(2+)-related proteins G. intraradices BEG141 may play a role in mobilization and perception of the intracellular messenger by the AM fungus during symbiotic interactions with host roots.


Subject(s)
Calcium/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Glomeromycota/metabolism , Medicago/microbiology , Mycorrhizae/metabolism , Plant Roots/microbiology , Fungal Proteins/genetics , Gene Expression Profiling , Glomeromycota/genetics , Homeostasis , Lasers , Microdissection , Signal Transduction , Symbiosis , Up-Regulation
18.
Plant Physiol Biochem ; 60: 233-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23000816

ABSTRACT

Cadmium is a serious environmental pollution threats to the planet. Its accumulation in plants affects many cellular functions, resulting in growth and development inhibition, whose mechanisms are not fully understood. However, some fungi forming arbuscular mycorrhizal symbiosis with the majority of plant species have the capacity to buffer the deleterious effect of this heavy metal. In the present work we investigated the capacity of Rhizophagus irregularis (syn. Glomus irregularis) to alleviate cadmium stress in Medicago truncatula. In spite of a reduction in all mycorrhizal parameters, plants colonized for 21 days by R. irregularis and treated by 2 mg kg⁻¹ cadmium displayed less growth inhibition in comparison to plants grown without cadmium. Cadmium strongly increased the accumulation of some isoflavonoids and their derivates: formononetin, malonylononin, medicarpin 3-O-ß-(6'-malonylglucoside), medicarpin and coumestrol. Interestingly, in plants colonized by R. irregularis we noticed a strong reduction of the cadmium-induced accumulation of root isoflavonoids, a part for medicarpin and coumestrol. Moreover, transcripts of chalcone reductase, a protein that we reported previously as being down-regulated in R. irregularis-colonized M. truncatula roots, revealed a similar expression pattern with a strong increase in response to cadmium and a reduced expression in cadmium-treated mycorrhizal roots.


Subject(s)
Alcohol Oxidoreductases/genetics , Cadmium/pharmacology , Glomeromycota/physiology , Isoflavones/metabolism , Medicago truncatula/metabolism , Mycorrhizae/physiology , Biomass , Coumestrol/metabolism , Down-Regulation/drug effects , Gene Expression Regulation, Plant/drug effects , Glomeromycota/growth & development , Glucosides/metabolism , Medicago truncatula/drug effects , Medicago truncatula/genetics , Medicago truncatula/microbiology , Mycorrhizae/growth & development , Plant Proteins/genetics , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/microbiology , Plant Shoots/drug effects , Plant Shoots/genetics , Plant Shoots/metabolism , Plant Shoots/microbiology , Pterocarpans/metabolism , Soil , Symbiosis
19.
Mol Plant ; 5(6): 1346-58, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22930732

ABSTRACT

We identified de novo sucrose transporter (SUT) genes involved in long-distance transport of sucrose from photosynthetic source leaves towards sink organs in the model leguminous species Medicago truncatula. The identification and functional analysis of sugar transporters provide key information on mechanisms that underlie carbon partitioning in plant-microorganism interactions. In that way, full-length sequences of the M. truncatula SUT (MtSUT) family were retrieved and biochemical characterization of MtSUT members was performed by heterologous expression in yeast. The MtSUT family now comprises six genes which distribute among Dicotyledonous clades. MtSUT1-1 and MtSUT4-1 are key members in regard to their expression profiles in source leaves and sink roots and were characterized as functional H(+)/sucrose transporters. Physiological and molecular responses to phosphorus supply and inoculation by the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was studied by gene expression and sugar quantification analyses. Sucrose represents the main sugar transport form in M. truncatula and the expression profiles of MtSUT1-1, MtSUT2, and MtSUT4-1 highlight a fine-tuning regulation for beneficial sugar fluxes towards the fungal symbiont. Taken together, these results suggest distinct functions for proteins from the SUT1, SUT2, and SUT4 clades in plant and in biotrophic interactions.


Subject(s)
Carbon/metabolism , Glomeromycota/physiology , Medicago truncatula/metabolism , Medicago truncatula/microbiology , Membrane Transport Proteins/metabolism , Mycorrhizae/physiology , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Medicago truncatula/genetics , Medicago truncatula/growth & development , Membrane Transport Proteins/genetics , Molecular Sequence Data , Phosphates/pharmacology , Plant Proteins/genetics , Symbiosis
20.
J Exp Bot ; 63(10): 3657-72, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22407649

ABSTRACT

The ectoparasitic dagger nematode (Xiphinema index), vector of Grapevine fanleaf virus (GFLV), provokes gall formation and can cause severe damage to the root system of grapevines. Mycorrhiza formation by Glomus (syn. Rhizophagus) intraradices BEG141 reduced both gall formation on roots of the grapevine rootstock SO4 (Vitis berlandieri×V. riparia) and nematode number in the surrounding soil. Suppressive effects increased with time and were greater when the nematode was post-inoculated rather than co-inoculated with the arbuscular mycorrhizal (AM) fungus. Using a split-root system, decreased X. index development was shown in mycorrhizal and non-mycorrhizal parts of mycorrhizal root systems, indicating that both local and systemic induced bioprotection mechanisms were active against the ectoparasitic nematode. Expression analyses of ESTs (expressed sequence tags) generated in an SSH (subtractive suppressive hybridization) library, representing plant genes up-regulated during mycorrhiza-induced control of X. index, and of described grapevine defence genes showed activation of chitinase 1b, pathogenesis-related 10, glutathione S-transferase, stilbene synthase 1, 5-enolpyruvyl shikimate-3-phosphate synthase, and a heat shock proein 70-interacting protein in association with the observed local and/or systemic induced bioprotection against the nematode. Overall, the data suggest priming of grapevine defence responses by the AM fungus and transmission of a plant-mediated signal to non-mycorrhizal tissues. Grapevine gene responses during AM-induced local and systemic bioprotection against X. index point to biological processes that are related either to direct effects on the nematode or to protection against nematode-imposed stress to maintain root tissue integrity.


Subject(s)
Glomeromycota/immunology , Mycorrhizae/immunology , Nematoda/immunology , Nepovirus/immunology , Plant Diseases/virology , Vitis/immunology , Animals , Gene Expression Regulation, Plant , Glomeromycota/physiology , Mycorrhizae/physiology , Nematoda/physiology , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/immunology , Plant Roots/immunology , Plant Roots/microbiology , Plant Roots/parasitology , Plant Roots/virology , Vitis/genetics , Vitis/microbiology , Vitis/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...