Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
JCI Insight ; 9(9)2024 May 08.
Article in English | MEDLINE | ID: mdl-38716733

ABSTRACT

Vaccination of malaria-naive volunteers with a high dose of Plasmodium falciparum sporozoites chemoattenuated by chloroquine (CQ) (PfSPZ-CVac [CQ]) has previously demonstrated full protection against controlled human malaria infection (CHMI). However, lower doses of PfSPZ-CVac [CQ] resulted in incomplete protection. This provides the opportunity to understand the immune mechanisms needed for better vaccine-induced protection by comparing individuals who were protected with those not protected. Using mass cytometry, we characterized immune cell composition and responses of malaria-naive European volunteers who received either lower doses of PfSPZ-CVac [CQ], resulting in 50% protection irrespective of the dose, or a placebo vaccination, with everyone becoming infected following CHMI. Clusters of CD4+ and γδ T cells associated with protection were identified, consistent with their known role in malaria immunity. Additionally, EMRA CD8+ T cells and CD56+CD8+ T cell clusters were associated with protection. In a cohort from a malaria-endemic area in Gabon, these CD8+ T cell clusters were also associated with parasitemia control in individuals with lifelong exposure to malaria. Upon stimulation with P. falciparum-infected erythrocytes, CD4+, γδ, and EMRA CD8+ T cells produced IFN-γ and/or TNF, indicating their ability to mediate responses that eliminate malaria parasites.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Sporozoites , Humans , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , CD8-Positive T-Lymphocytes/immunology , Adult , Sporozoites/immunology , Male , CD4-Positive T-Lymphocytes/immunology , Chloroquine/therapeutic use , Chloroquine/pharmacology , Female , Young Adult , Gabon , Vaccination/methods , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Europe , Parasitemia/immunology , Adolescent , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , European People
2.
Article in English | MEDLINE | ID: mdl-38536165

ABSTRACT

RATIONALE: Chronic inflammation plays an important role in alveolar tissue damage in emphysema, but the underlying immune alterations and cellular interactions are incompletely understood. OBJECTIVE: To explore disease-specific pulmonary immune cell alterations and cellular interactions in emphysema. METHODS: We used single-cell mass cytometry to compare the immune compartment in alveolar tissue from 15 patients with severe emphysema and 5 controls. Imaging mass cytometry (IMC) was applied to identify altered cell-cell interactions in alveolar tissue from emphysema patients (n=12) compared to controls (n=8). MEASUREMENTS AND MAIN RESULTS: We observed higher percentages of central memory CD4 T cells in combination with lower proportions of effector memory CD4 T cells in emphysema. In addition, proportions of cytotoxic central memory CD8 T cells and CD127+CD27+CD69- T cells were higher in emphysema, the latter potentially reflecting an influx of circulating lymphocytes into the lungs. Central memory CD8 T cells, isolated from alveolar tissue from emphysema patients exhibited an IFN-γ-response upon anti-CD3/anti-CD28 activation. Proportions of CD1c+ dendritic cells (DC), expressing migratory and costimulatory markers, were higher in emphysema. Importantly, IMC enabled us to visualize increased spatial colocalization of CD1c+ DC and CD8 T cells in emphysema in situ. CONCLUSION: Using single-cell CyTOF, we characterized the alterations of the immune cell signature in alveolar tissue from patients with COPD stage III/IV emphysema versus control lung tissue. These data contribute to a better understanding of the pathogenesis of emphysema and highlight the feasibility of interrogating the immune cell signature using single-cell and IMC in human lung tissue.

3.
Front Immunol ; 14: 1274116, 2023.
Article in English | MEDLINE | ID: mdl-38094307

ABSTRACT

Idiopathic acquired aplastic anemia (AA) is considered an immune-mediated syndrome of bone marrow failure since approximately 70% of patients respond to immunosuppressive therapy (IST) consisting of a course of anti-thymocyte globulin (ATG) followed by long-term use of ciclosporin. However, the immune response that underlies the pathogenesis of AA remains poorly understood. In this study, we applied high-dimensional mass cytometry on bone marrow aspirates of AA patients pre-ATG, AA patients post-ATG and healthy donors to decipher which immune cells may be implicated in the pathogenesis of AA. We show that the bone marrow of AA patients features an immune cell composition distinct from healthy donors, with significant differences in the myeloid, B-cell, CD4+ and CD8+ T-cells lineages. Specifically, we discovered that AA pre-ATG is characterized by a disease-specific immune cell network with high frequencies of CD16+ myeloid cells, CCR6++ B-cells, Th17-like CCR6+ memory CD4+ T-cells, CD45RA+CCR7+CD38+ CD8+ T-cells and KLRG1+ terminally differentiated effector memory (EMRA) CD8+ T-cells, compatible with a state of chronic inflammation. Successful treatment with IST strongly reduced the levels of CD16+ myeloid cells and showed a trend toward normalization of the frequencies of CCR6++ B-cells, CCR6+ memory CD4+ T-cells and KLRG1+EMRA CD8+ T-cells. Altogether, our study provides a unique overview of the immune landscape in bone marrow in AA at a single-cell level and proposes CCR6 as a potential new therapeutic target in AA.


Subject(s)
Anemia, Aplastic , Pancytopenia , Humans , Bone Marrow , CD8-Positive T-Lymphocytes/pathology , Cyclosporine/therapeutic use , Antilymphocyte Serum/therapeutic use
4.
Nat Commun ; 14(1): 2947, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37268690

ABSTRACT

Derangements of the blood-brain barrier (BBB) or blood-retinal barrier (BRB) occur in disorders ranging from stroke, cancer, diabetic retinopathy, and Alzheimer's disease. The Norrin/FZD4/TSPAN12 pathway activates WNT/ß-catenin signaling, which is essential for BBB and BRB function. However, systemic pharmacologic FZD4 stimulation is hindered by obligate palmitoylation and insolubility of native WNTs and suboptimal properties of the FZD4-selective ligand Norrin. Here, we develop L6-F4-2, a non-lipidated, FZD4-specific surrogate which significantly improves subpicomolar affinity versus native Norrin. In Norrin knockout (NdpKO) mice, L6-F4-2 not only potently reverses neonatal retinal angiogenesis deficits, but also restores BRB and BBB function. In adult C57Bl/6J mice, post-stroke systemic delivery of L6-F4-2 strongly reduces BBB permeability, infarction, and edema, while improving neurologic score and capillary pericyte coverage. Our findings reveal systemic efficacy of a bioengineered FZD4-selective WNT surrogate during ischemic BBB dysfunction, with potential applicability to adult CNS disorders characterized by an aberrant blood-brain barrier.


Subject(s)
Blood-Brain Barrier , Frizzled Receptors , Mice , Animals , Blood-Brain Barrier/metabolism , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , Retina/metabolism , Blood-Retinal Barrier/metabolism , Wnt Signaling Pathway
5.
Res Sq ; 2023 May 05.
Article in English | MEDLINE | ID: mdl-37205380

ABSTRACT

Tissue-resident immunity underlies essential host defenses against pathogens, but analysis in humans has lacked in vitro model systems where epithelial infection and accompanying resident immune cell responses can be observed en bloc. Indeed, human primary epithelial organoid cultures typically omit immune cells, and human tissue resident-memory lymphocytes are conventionally assayed without an epithelial infection component, for instance from peripheral blood, or after extraction from organs. Further, the study of resident immunity in animals can be complicated by interchange between tissue and peripheral immune compartments. To study human tissue-resident infectious immune responses in isolation from secondary lymphoid organs, we generated adult human lung three-dimensional air-liquid interface (ALI) lung organoids from intact tissue fragments that co-preserve epithelial and stromal architecture alongside endogenous lung-resident immune subsets. These included T, B, NK and myeloid cells, with CD69+CD103+ tissue-resident and CCR7- and/or CD45RA- TRM and conservation of T cell receptor repertoires, all corresponding to matched fresh tissue. SARS-CoV-2 vigorously infected organoid lung epithelium, alongside secondary induction of innate cytokine production that was inhibited by antiviral agents. Notably, SARS-CoV-2-infected organoids manifested adaptive virus-specific T cell activation that was specific for seropositive and/or previously infected donor individuals. This holistic non-reconstitutive organoid system demonstrates the sufficiency of lung to autonomously mount adaptive T cell memory responses without a peripheral lymphoid component, and represents an enabling method for the study of human tissue-resident immunity.

6.
bioRxiv ; 2023 May 07.
Article in English | MEDLINE | ID: mdl-37205513

ABSTRACT

Duodenal bicarbonate secretion is critical to epithelial protection, nutrient digestion/absorption and is impaired in cystic fibrosis (CF). We examined if linaclotide, typically used to treat constipation, may also alter duodenal bicarbonate secretion. Bicarbonate secretion was measured in vivo and in vitro using mouse and human duodenum. Ion transporter localization was identified with confocal microscopy and de novo analysis of human duodenal single cell RNA sequencing (sc-RNAseq) was performed. Linaclotide increased bicarbonate secretion in mouse and human duodenum in the absence of CFTR expression or function. Linaclotide-stimulated bicarbonate secretion was eliminated by down-regulated in adenoma (DRA) inhibition, regardless of CFTR activity. Sc-RNAseq identified that 70% of villus cells expressed SLC26A3, but not CFTR, mRNA. Linaclotide increased apical membrane expression of DRA in non-CF and CF differentiated enteroids. These data provide insights into the action of linaclotide and suggest linaclotide may be a useful therapy for CF individuals with impaired bicarbonate secretion.

7.
Nat Commun ; 14(1): 1318, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36899020

ABSTRACT

The intestine represents the largest immune compartment in the human body, yet its development and organisation during human foetal development is largely unknown. Here we show the immune subset composition of this organ during development, by longitudinal spectral flow cytometry analysis of human foetal intestinal samples between 14 and 22 weeks of gestation. At 14 weeks, the foetal intestine is mainly populated by myeloid cells and three distinct CD3-CD7+ ILC, followed by rapid appearance of adaptive CD4+, CD8+ T and B cell subsets. Imaging mass cytometry identifies lymphoid follicles from week 16 onwards in a villus-like structure covered by epithelium and confirms the presence of Ki-67+ cells in situ within all CD3-CD7+ ILC, T, B and myeloid cell subsets. Foetal intestinal lymphoid subsets are capable of spontaneous proliferation in vitro. IL-7 mRNA is detected within both the lamina propria and the epithelium and IL-7 enhances proliferation of several subsets in vitro. Overall, these observations demonstrate the presence of immune subset-committed cells capable of local proliferation in the developing human foetal intestine, likely contributing to the development and growth of organized immune structures throughout most of the 2nd trimester, which might influence microbial colonization upon birth.


Subject(s)
Interleukin-7 , Intestines , Pregnancy , Female , Humans , Pregnancy Trimester, Second , Fetus , Lymphocytes , Intestinal Mucosa , T-Lymphocyte Subsets
8.
J Cyst Fibros ; 22(2): 290-295, 2023 03.
Article in English | MEDLINE | ID: mdl-36572613

ABSTRACT

Previous wireless motility capsule (WMC) studies demonstrated decreased small intestinal pH in people with CF (PwCF) however the data is lacking on the colonic pH profile. We re-analyzed previously published WMC data to determine colonic pH/bicarbonate concentration and single cell RNA sequencing (sc-RNAseq) to examine the normal expression of acid-base transporters in the colon/rectum.CF patients showed significantly lower pH and bicarbonate concentration values, particularly in the distal rectosigmoid region. There was no difference in colonic motility parameters between CF and non-CF subjects. SLC26A3 is highly expressed bicarbonate transporter in the colon and rectum, more so than CFTR. While dysmotility can alter intraluminal pH, observed changes likely originate from alterations in intestinal ion transport rather than colonic dysmotility. SLC26A3 is abundantly expressed in the human colon and rectum and may be a therapeutic target for restoration of bicarbonate transport. These findings may help better understand the gastrointestinal symptoms in PwCF.


Subject(s)
Cystic Fibrosis , Humans , Adult , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Bicarbonates/metabolism , Intestine, Small/metabolism , Colon/metabolism , Hydrogen-Ion Concentration , Gastrointestinal Motility
9.
Front Immunol ; 13: 893803, 2022.
Article in English | MEDLINE | ID: mdl-35812429

ABSTRACT

Chronic intestinal inflammation underlies inflammatory bowel disease (IBD). Previous studies indicated alterations in the cellular immune system; however, it has been challenging to interrogate the role of all immune cell subsets simultaneously. Therefore, we aimed to identify immune cell types associated with inflammation in IBD using high-dimensional mass cytometry. We analyzed 188 intestinal biopsies and paired blood samples of newly-diagnosed, treatment-naive patients (n=42) and controls (n=26) in two independent cohorts. We applied mass cytometry (36-antibody panel) to resolve single cells and analyzed the data with unbiased Hierarchical-SNE. In addition, imaging-mass cytometry (IMC) was performed to reveal the spatial distribution of the immune subsets in the tissue. We identified 44 distinct immune subsets. Correlation network analysis identified a network of inflammation-associated subsets, including HLA-DR+CD38+ EM CD4+ T cells, T regulatory-like cells, PD1+ EM CD8+ T cells, neutrophils, CD27+ TCRγδ cells and NK cells. All disease-associated subsets were validated in a second cohort. This network was abundant in a subset of patients, independent of IBD subtype, severity or intestinal location. Putative disease-associated CD4+ T cells were detectable in blood. Finally, imaging-mass cytometry revealed the spatial colocalization of neutrophils, memory CD4+ T cells and myeloid cells in the inflamed intestine. Our study indicates that a cellular network of both innate and adaptive immune cells colocalizes in inflamed biopsies from a subset of patients. These results contribute to dissecting disease heterogeneity and may guide the development of targeted therapeutics in IBD.


Subject(s)
Colitis, Ulcerative , Inflammatory Bowel Diseases , CD8-Positive T-Lymphocytes , Humans , Inflammation , Intestines/pathology
10.
Science ; 376(6590): eabi9591, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35258337

ABSTRACT

In this work, we find that CD8+ T cells expressing inhibitory killer cell immunoglobulin-like receptors (KIRs) are the human equivalent of Ly49+CD8+ regulatory T cells in mice and are increased in the blood and inflamed tissues of patients with a variety of autoimmune diseases. Moreover, these CD8+ T cells efficiently eliminated pathogenic gliadin-specific CD4+ T cells from the leukocytes of celiac disease patients in vitro. We also find elevated levels of KIR+CD8+ T cells, but not CD4+ regulatory T cells, in COVID-19 patients, correlating with disease severity and vasculitis. Selective ablation of Ly49+CD8+ T cells in virus-infected mice led to autoimmunity after infection. Our results indicate that in both species, these regulatory CD8+ T cells act specifically to suppress pathogenic T cells in autoimmune and infectious diseases.


Subject(s)
Autoimmune Diseases , COVID-19 , Animals , CD8-Positive T-Lymphocytes , Humans , Mice , Receptors, KIR , T-Lymphocytes, Regulatory
11.
Nat Immunol ; 22(5): 654-665, 2021 05.
Article in English | MEDLINE | ID: mdl-33888898

ABSTRACT

Controlled human infections provide opportunities to study the interaction between the immune system and malaria parasites, which is essential for vaccine development. Here, we compared immune signatures of malaria-naive Europeans and of Africans with lifelong malaria exposure using mass cytometry, RNA sequencing and data integration, before and 5 and 11 days after venous inoculation with Plasmodium falciparum sporozoites. We observed differences in immune cell populations, antigen-specific responses and gene expression profiles between Europeans and Africans and among Africans with differing degrees of immunity. Before inoculation, an activated/differentiated state of both innate and adaptive cells, including elevated CD161+CD4+ T cells and interferon-γ production, predicted Africans capable of controlling parasitemia. After inoculation, the rapidity of the transcriptional response and clusters of CD4+ T cells, plasmacytoid dendritic cells and innate T cells were among the features distinguishing Africans capable of controlling parasitemia from susceptible individuals. These findings can guide the development of a vaccine effective in malaria-endemic regions.


Subject(s)
Adaptive Immunity/immunology , Disease Susceptibility/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Adaptive Immunity/genetics , Adolescent , Adult , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Black People/genetics , Dendritic Cells/immunology , Disease Susceptibility/blood , Disease Susceptibility/parasitology , Female , Healthy Volunteers , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Interferon-gamma/metabolism , Malaria, Falciparum/blood , Malaria, Falciparum/parasitology , Male , RNA-Seq , Systems Analysis , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , White People/genetics , Young Adult
12.
IEEE Trans Vis Comput Graph ; 27(1): 98-110, 2021 01.
Article in English | MEDLINE | ID: mdl-31369380

ABSTRACT

Tissue functionality is determined by the characteristics of tissue-resident cells and their interactions within their microenvironment. Imaging Mass Cytometry offers the opportunity to distinguish cell types with high precision and link them to their spatial location in intact tissues at sub-cellular resolution. This technology produces large amounts of spatially-resolved high-dimensional data, which constitutes a serious challenge for the data analysis. We present an interactive visual analysis workflow for the end-to-end analysis of Imaging Mass Cytometry data that was developed in close collaboration with domain expert partners. We implemented the presented workflow in an interactive visual analysis tool; ImaCytE. Our workflow is designed to allow the user to discriminate cell types according to their protein expression profiles and analyze their cellular microenvironments, aiding in the formulation or verification of hypotheses on tissue architecture and function. Finally, we show the effectiveness of our workflow and ImaCytE through a case study performed by a collaborating specialist.


Subject(s)
Computational Biology/methods , Image Cytometry/methods , Cellular Microenvironment/physiology , Image Processing, Computer-Assisted , Phenotype , Software
13.
bioRxiv ; 2021 Dec 25.
Article in English | MEDLINE | ID: mdl-34981055

ABSTRACT

Previous reports show that Ly49 + CD8 + T cells can suppress autoimmunity in mouse models of autoimmune diseases. Here we find a markedly increased frequency of CD8 + T cells expressing inhibitory Killer cell Immunoglobulin like Receptors (KIR), the human equivalent of the Ly49 family, in the blood and inflamed tissues of various autoimmune diseases. Moreover, KIR + CD8 + T cells can efficiently eliminate pathogenic gliadin-specific CD4 + T cells from Celiac disease (CeD) patients' leukocytes in vitro . Furthermore, we observe elevated levels of KIR + CD8 + T cells, but not CD4 + regulatory T cells, in COVID-19 and influenza-infected patients, and this correlates with disease severity and vasculitis in COVID-19. Expanded KIR + CD8 + T cells from these different diseases display shared phenotypes and similar T cell receptor sequences. These results characterize a regulatory CD8 + T cell subset in humans, broadly active in both autoimmune and infectious diseases, which we hypothesize functions to control self-reactive or otherwise pathogenic T cells. ONE-SENTENCE SUMMARY: Here we identified KIR + CD8 + T cells as a regulatory CD8 + T cell subset in humans that suppresses self-reactive or otherwise pathogenic CD4 + T cells.

14.
Nature ; 588(7839): 670-675, 2020 12.
Article in English | MEDLINE | ID: mdl-33238290

ABSTRACT

The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange. Three-dimensional in vitro human distal lung culture systems would strongly facilitate the investigation of pathologies such as interstitial lung disease, cancer and coronavirus disease 2019 (COVID-19) pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we describe the development of a long-term feeder-free, chemically defined culture system for distal lung progenitors as organoids derived from single adult human alveolar epithelial type II (AT2) or KRT5+ basal cells. AT2 organoids were able to differentiate into AT1 cells, and basal cell organoids developed lumens lined with differentiated club and ciliated cells. Single-cell analysis of KRT5+ cells in basal organoids revealed a distinct population of ITGA6+ITGB4+ mitotic cells, whose offspring further segregated into a TNFRSF12Ahi subfraction that comprised about ten per cent of KRT5+ basal cells. This subpopulation formed clusters within terminal bronchioles and exhibited enriched clonogenic organoid growth activity. We created distal lung organoids with apical-out polarity to present ACE2 on the exposed external surface, facilitating infection of AT2 and basal cultures with SARS-CoV-2 and identifying club cells as a target population. This long-term, feeder-free culture of human distal lung organoids, coupled with single-cell analysis, identifies functional heterogeneity among basal cells and establishes a facile in vitro organoid model of human distal lung infections, including COVID-19-associated pneumonia.


Subject(s)
COVID-19/virology , Lung/cytology , Models, Biological , Organoids/cytology , Organoids/virology , SARS-CoV-2/physiology , Tissue Culture Techniques , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , COVID-19/metabolism , COVID-19/pathology , Cell Differentiation , Cell Division , Clone Cells/cytology , Clone Cells/metabolism , Clone Cells/virology , Humans , In Vitro Techniques , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H1N1 Subtype/physiology , Integrin alpha6/analysis , Integrin beta4/analysis , Keratin-5/analysis , Organoids/metabolism , Pneumonia, Viral/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2/growth & development , Single-Cell Analysis , TWEAK Receptor/analysis
15.
Front Immunol ; 11: 571300, 2020.
Article in English | MEDLINE | ID: mdl-33193353

ABSTRACT

During healthy pregnancy, a balanced microenvironment at the maternal-fetal interface with coordinated interaction between various immune cells is necessary to maintain immunological tolerance. While specific decidual immune cell subsets have been investigated, a system-wide unbiased approach is lacking. Here, mass cytometry was applied for data-driven, in-depth immune profiling of the total leukocyte population isolated from first, second, and third trimester decidua, as well as maternal peripheral blood at time of delivery. The maternal-fetal interface showed a unique composition of immune cells, different from peripheral blood, with significant differences between early and term pregnancy samples. Profiling revealed substantial heterogeneity in the decidual lymphoid and myeloid cell lineages that shape gestational-specific immune networks and putative differentiation trajectories over time during gestation. Uncovering the overall complexity at the maternal-fetal interface throughout pregnancy resulted in a human atlas that may serve as a foundation upon which comprehension of the immune microenvironment and alterations thereof in pregnancy complications can be built.


Subject(s)
Decidua/immunology , Leukocytes/immunology , Lymphocytes/immunology , Perinatology/methods , Placenta/immunology , Pregnancy Complications/immunology , Pregnancy , Adult , Cells, Cultured , Cellular Microenvironment , Female , Flow Cytometry , Humans , Immune Tolerance , Immunophenotyping
16.
Front Immunol ; 11: 1466, 2020.
Article in English | MEDLINE | ID: mdl-32765508

ABSTRACT

Imaging mass cytometry (IMC) is able to quantify the expression of dozens of markers at sub-cellular resolution on a single tissue section by combining a novel laser ablation system with mass cytometry. As such, it allows us to gain spatial information and antigen quantification in situ, and can be applied to both snap-frozen and formalin-fixed, paraffin-embedded (FFPE) tissue sections. Herein, we have developed and optimized the immunodetection conditions for a 34-antibody panel for use on human snap-frozen tissue sections. For this, we tested the performance of 80 antibodies. Moreover, we compared tissue drying times, fixation procedures and antibody incubation conditions. We observed that variations in the drying times of tissue sections had little impact on the quality of the images. Fixation with methanol for 5 min at -20°C or 1% paraformaldehyde (PFA) for 5 min at room temperature followed by methanol for 5 min at -20°C were superior to fixation with acetone or PFA only. Finally, we observed that antibody incubation overnight at 4°C yielded more consistent results as compared to staining at room temperature for 5 h. Finally, we used the optimized method for staining of human fetal and adult intestinal tissue samples. We present the tissue architecture and spatial distribution of the stromal cells and immune cells in these samples visualizing blood vessels, the epithelium and lamina propria based on the expression of α-smooth muscle actin (α-SMA), E-Cadherin and Vimentin, while simultaneously revealing the colocalization of T cells, innate lymphoid cells (ILCs), and various myeloid cell subsets in the lamina propria of the human fetal intestine. We expect that this work can aid the scientific community who wish to improve IMC data quality.


Subject(s)
Biomarkers/metabolism , Image Cytometry/methods , Intestinal Mucosa/metabolism , Lymphocytes/immunology , T-Lymphocytes/immunology , Actins/metabolism , Adult , Antibodies/immunology , Antibodies/metabolism , Cadherins/metabolism , Female , Frozen Sections , Humans , Immunity, Innate , Intestinal Mucosa/pathology , Paraffin Embedding , Vimentin/metabolism
17.
bioRxiv ; 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32743583

ABSTRACT

The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange and is affected by disorders including interstitial lung disease, cancer, and SARS-CoV-2-associated COVID-19 pneumonia. Investigations of these localized pathologies have been hindered by a lack of 3D in vitro human distal lung culture systems. Further, human distal lung stem cell identification has been impaired by quiescence, anatomic divergence from mouse and lack of lineage tracing and clonogenic culture. Here, we developed robust feeder-free, chemically-defined culture of distal human lung progenitors as organoids derived clonally from single adult human alveolar epithelial type II (AT2) or KRT5 + basal cells. AT2 organoids exhibited AT1 transdifferentiation potential, while basal cell organoids progressively developed lumens lined by differentiated club and ciliated cells. Organoids consisting solely of club cells were not observed. Upon single cell RNA-sequencing (scRNA-seq), alveolar organoids were composed of proliferative AT2 cells; however, basal organoid KRT5 + cells contained a distinct ITGA6 + ITGB4 + mitotic population whose proliferation segregated to a TNFRSF12A hi subfraction. Clonogenic organoid growth was markedly enriched within the TNFRSF12A hi subset of FACS-purified ITGA6 + ITGB4 + basal cells from human lung or derivative organoids. In vivo, TNFRSF12A + cells comprised ~10% of KRT5 + basal cells and resided in clusters within terminal bronchioles. To model COVID-19 distal lung disease, we everted the polarity of basal and alveolar organoids to rapidly relocate differentiated club and ciliated cells from the organoid lumen to the exterior surface, thus displaying the SARS-CoV-2 receptor ACE2 on the outwardly-facing apical aspect. Accordingly, basal and AT2 apical-out organoids were infected by SARS-CoV-2, identifying club cells as a novel target population. This long-term, feeder-free organoid culture of human distal lung alveolar and basal stem cells, coupled with single cell analysis, identifies unsuspected basal cell functional heterogeneity and exemplifies progenitor identification within a slowly proliferating human tissue. Further, our studies establish a facile in vitro organoid model for human distal lung infectious diseases including COVID-19-associated pneumonia.

18.
Sci Transl Med ; 12(524)2020 01 01.
Article in English | MEDLINE | ID: mdl-31894102

ABSTRACT

Helminth infections induce strong type 2 and regulatory responses, but the degree of heterogeneity of such cells is not well characterized. Using mass cytometry, we profiled these cells in Europeans and Indonesians not exposed to helminths and in Indonesians residing in rural areas infected with soil-transmitted helminths. To assign immune alteration to helminth infection, the profiling was performed before and 1 year after deworming. Very distinct signatures were found in Europeans and Indonesians, showing expanded frequencies of T helper 2 cells, particularly CD161+ cells and ILC2s in helminth-infected Indonesians, which was confirmed functionally through analysis of cytokine-producing cells. Besides ILC2s and CD4+ T cells, CD8+ T cells and γδ T cells in Indonesians produced type 2 cytokines. Regulatory T cells were also expanded in Indonesians, but only those expressing CTLA-4, and some coexpressed CD38, HLA-DR, ICOS, or CD161. CD11c+ B cells were found to be the main IL-10 producers among B cells in Indonesians, a subset that was almost absent in Europeans. A number of the distinct immune profiles were driven by helminths as the profiles reverted after clearance of helminth infections. Moreover, Indonesians with no helminth infections residing in an urban area showed immune profiles that resembled Europeans rather than rural Indonesians, which excludes a major role for ethnicity. Detailed insight into the human type 2 and regulatory networks could provide opportunities to target these cells for more precise interventions.


Subject(s)
Helminthiasis/immunology , Helminths/physiology , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Animals , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Europe , Helminthiasis/drug therapy , Humans , Indonesia , Interleukin-10/metabolism , NK Cell Lectin-Like Receptor Subfamily B/metabolism , Rural Population
19.
Gut ; 69(4): 691-703, 2020 04.
Article in English | MEDLINE | ID: mdl-31270164

ABSTRACT

OBJECTIVE: A comprehensive understanding of anticancer immune responses is paramount for the optimal application and development of cancer immunotherapies. We unravelled local and systemic immune profiles in patients with colorectal cancer (CRC) by high-dimensional analysis to provide an unbiased characterisation of the immune contexture of CRC. DESIGN: Thirty-six immune cell markers were simultaneously assessed at the single-cell level by mass cytometry in 35 CRC tissues, 26 tumour-associated lymph nodes, 17 colorectal healthy mucosa and 19 peripheral blood samples from 31 patients with CRC. Additionally, functional, transcriptional and spatial analyses of tumour-infiltrating lymphocytes were performed by flow cytometry, single-cell RNA-sequencing and multispectral immunofluorescence. RESULTS: We discovered that a previously unappreciated innate lymphocyte population (Lin-CD7+CD127-CD56+CD45RO+) was enriched in CRC tissues and displayed cytotoxic activity. This subset demonstrated a tissue-resident (CD103+CD69+) phenotype and was most abundant in immunogenic mismatch repair (MMR)-deficient CRCs. Their presence in tumours was correlated with the infiltration of tumour-resident cytotoxic, helper and γδ T cells with highly similar activated (HLA-DR+CD38+PD-1+) phenotypes. Remarkably, activated γδ T cells were almost exclusively found in MMR-deficient cancers. Non-activated counterparts of tumour-resident cytotoxic and γδ T cells were present in CRC and healthy mucosa tissues, but not in lymph nodes, with the exception of tumour-positive lymph nodes. CONCLUSION: This work provides a blueprint for the understanding of the heterogeneous and intricate immune landscape of CRC, including the identification of previously unappreciated immune cell subsets. The concomitant presence of tumour-resident innate and adaptive immune cell populations suggests a multitargeted exploitation of their antitumour properties in a therapeutic setting.


Subject(s)
Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Antigens, CD/metabolism , CD8 Antigens/metabolism , Case-Control Studies , Colonic Neoplasms/metabolism , Flow Cytometry , Humans , Integrin alpha Chains/metabolism , Lymphocyte Count , Lymphocytes, Tumor-Infiltrating
20.
J Autoimmun ; 107: 102361, 2020 02.
Article in English | MEDLINE | ID: mdl-31776056

ABSTRACT

Induction of antigen-specific regulatory T cells (Tregs) in vivo is the holy grail of current immune-regulating therapies in autoimmune diseases, such as type 1 diabetes. Tolerogenic dendritic cells (tolDCs) generated from monocytes by a combined treatment with vitamin D and dexamethasone (marked by CD52hi and CD86lo expression) induce antigen-specific Tregs. We evaluated the phenotypes of these Tregs using high-dimensional mass cytometry to identify a surface-based T cell signature of tolerogenic modulation. Naïve CD4+ T cells were stimulated with tolDCs or mature inflammatory DCs pulsed with proinsulin peptide, after which the suppressive capacity, cytokine production and phenotype of stimulated T cells were analysed. TolDCs induced suppressive T cell lines that were dominated by a naïve phenotype (CD45RA+CCR7+). These naïve T cells, however, did not show suppressive capacity, but were arrested in their naïve status. T cell cultures stimulated by tolDC further contained memory-like (CD45RA-CCR7-) T cells expressing regulatory markers Lag-3, CD161 and ICOS. T cells expressing CD25lo or CD25hi were most prominent and suppressed CD4+ proliferation, while CD25hi Tregs also effectively supressed effector CD8+ T cells. We conclude that tolDCs induce antigen-specific Tregs with various phenotypes. This extends our earlier findings pointing to a functionally diverse pool of antigen-induced and specific Tregs and provides the basis for immune-monitoring in clinical trials with tolDC.


Subject(s)
Autoimmunity , Dendritic Cells/immunology , Dendritic Cells/metabolism , Immune Tolerance , Peptides/immunology , Proinsulin/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Biomarkers , Cytokines/metabolism , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Humans , Immunophenotyping , Monocytes/immunology , Monocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...