Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 12(42): 14241-14253, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34760210

ABSTRACT

Oxidized copper surfaces have attracted significant attention in recent years due to their unique catalytic properties, including their enhanced hydrocarbon selectivity during the electrochemical reduction of CO2. Although oxygen plasma has been used to create highly active copper oxide electrodes for CO2RR, how such treatment alters the copper surface is still poorly understood. Here, we study the oxidation of Cu(100) and Cu(111) surfaces by sequential exposure to a low-pressure oxygen plasma at room temperature. We used scanning tunnelling microscopy (STM), low energy electron microscopy (LEEM), X-ray photoelectron spectroscopy (XPS), near edge X-ray absorption fine structure spectroscopy (NEXAFS) and low energy electron diffraction (LEED) for the comprehensive characterization of the resulting oxide films. O2-plasma exposure initially induces the growth of 3-dimensional oxide islands surrounded by an O-covered Cu surface. With ongoing plasma exposure, the islands coalesce and form a closed oxide film. Utilizing spectroscopy, we traced the evolution of metallic Cu, Cu2O and CuO species upon oxygen plasma exposure and found a dependence of the surface structure and chemical state on the substrate's orientation. On Cu(100) the oxide islands grow with a lower rate than on the (111) surface. Furthermore, while on Cu(100) only Cu2O is formed during the initial growth phase, both Cu2O and CuO species are simultaneously generated on Cu(111). Finally, prolonged oxygen plasma exposure results in a sandwiched film structure with CuO at the surface and Cu2O at the interface to the metallic support. A stable CuO(111) surface orientation is identified in both cases, aligned to the Cu(111) support, but with two coexisting rotational domains on Cu(100). These findings illustrate the possibility of tailoring the oxidation state, structure and morphology of metallic surfaces for a wide range of applications through oxygen plasma treatments.

2.
Chem Commun (Camb) ; 52(49): 7711-4, 2016 Jun 08.
Article in English | MEDLINE | ID: mdl-27230941

ABSTRACT

The dehydrogenation and dechlorination of FeOEP-Cl on Cu(111) has been studied in detail by scanning tunneling microscopy. Although, it is not possible to follow the reaction of an individual molecule, the complete pathway of the reaction with 22 inequivalent intermediate states and the rates of the involved processes are revealed. This is achieved by combining the analysis of a large data set showing thousands of molecules in the different stages of the reaction with numerical simulations.

3.
Chemphyschem ; 14(15): 3472-5, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24038896

ABSTRACT

To be or not to be chlorinated: When octaethylporphyrin iron(III) chloride (FeOEP-Cl) molecules are sublimated onto Cu(111) surfaces, two different molecular species are observed through scanning tunneling microscopy, showing either a protrusion or a depression at the center. In combination with van der Waals-corrected density functional calculations, our experiments reveal that one species corresponds to FeOEP-Cl molecules with the chlorine atom pointing away from the surface, whereas the other species has been dechlorinated.

4.
Beilstein J Nanotechnol ; 3: 207-12, 2012.
Article in English | MEDLINE | ID: mdl-22496993

ABSTRACT

Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM) allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements). When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip-sample system, and the process can be understood as a hysteresis of forces between approach and retraction of the tip. In this paper, we present the direct measurement of the whole hysteresis loop in force-spectroscopy curves at 77 K on the PTCDA/Ag/Si(111) √3 × âˆš3 surface by means of a tuning-fork-based NC-AFM with an oscillation amplitude smaller than the distance range of the hysteresis loop. The hysteresis effect is caused by the making and breaking of a bond between PTCDA molecules on the surface and a PTCDA molecule at the tip. The corresponding energy loss was determined to be 0.57 eV by evaluation of the force-distance curves upon approach and retraction. Furthermore, a second dissipation process was identified through the damping of the oscillation while the molecule on the tip is in contact with the surface. This dissipation process occurs mainly during the retraction of the tip. It reaches a maximum value of about 0.22 eV/cycle.

5.
Beilstein J Nanotechnol ; 3: 809-16, 2012.
Article in English | MEDLINE | ID: mdl-23365793

ABSTRACT

We present an overview of experimental and numerical methods to determine the spring constant of a quartz tuning fork in qPlus configuration. The simple calculation for a rectangular cantilever is compared to the values obtained by the analysis of the thermal excitation and by the direct mechanical measurement of the force versus displacement. To elucidate the difference, numerical simulations were performed taking account of the real geometry including the glue that is used to mount the tuning fork.

SELECTION OF CITATIONS
SEARCH DETAIL
...