Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Emerg Med ; 66: 40-44, 2023 04.
Article in English | MEDLINE | ID: mdl-36680868

ABSTRACT

INTRODUCTION: Response to medical incidents in mountainous areas is delayed due to the remote and challenging terrain. Drones could assist in a quicker search for patients and can facilitate earlier treatment through delivery of medical equipment. We aim to assess the effects of using drones in search and rescue (SAR) operations in challenging terrain. We hypothesize that drones can reduce the search time and treatment-free interval of patients by delivering an emergency kit and telemedical support. METHODS: In this randomized controlled trial with a cross-over design two methods of searching for and initiating treatment of a patient were compared. The primary outcome was a comparison of the times for locating a patient through visual contact and starting treatment on-site between the drone-assisted intervention arm and the conventional ground-rescue control arm. A linear mixed model (LMM) was used to evaluate the effect of using a drone on search and start of treatment times. RESULTS: Twenty-four SAR missions, performed by six SAR teams each with four team members, were analyzed. The mean time to locate the patient was 14.6 min (95% CI 11.3-17.9) in the drone-assisted intervention arm and 20.6 min (95% CI 17.3-23.9) in the control arm. The mean time to start treatment was 15.7 min (95% CI 12.4-19.0) in the drone-assisted arm and 22.4 min (95% CI 19.1-25.7) in the control arm (p < 0.01 for both comparisons). CONCLUSION: The successful use of drones in SAR operations leads to a reduction in search time and treatment-free interval of patients in challenging terrain, which could improve outcomes in patients suffering from traumatic injuries, the most commonly occurring incident requiring mountain rescue operations.


Subject(s)
Emergency Medical Services , Telemedicine , Humans , Unmanned Aerial Devices , Aircraft , Rescue Work/methods , Emergency Medical Services/methods
2.
Am J Emerg Med ; 53: 54-58, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34979409

ABSTRACT

INTRODUCTION: Space travel is expected to grow in the near future, which could lead to a higher burden of sudden cardiac arrest (SCA) in astronauts. Current methods to perform cardiopulmonary resuscitation in microgravity perform below earth-based standards in terms of depth achieved and the ability to sustain chest compressions (CC). We hypothesised that an automated chest compression device (ACCD) delivers high-quality CC during simulated micro- and hypergravity conditions. METHODS: Data on CC depth, rate, release and position utilising an ACCD were collected continuously during a parabolic flight with alternating conditions of normogravity (1 G), hypergravity (1.8 G) and microgravity (0 G), performed on a training manikin fixed in place. Kruskal-Wallis and Mann-Withney U test were used for comparison purpose. RESULTS: Mechanical CC was performed continuously during the flight; no missed compressions or pauses were recorded. Mean depth of CC showed minimal but statistically significant variations in compression depth during the different phases of the parabolic flight (microgravity 49.9 ± 0.7, normogravity 49.9 ± 0.5 and hypergravity 50.1 ± 0.6 mm, p < 0.001). CONCLUSION: The use of an ACCD allows continuous delivery of high-quality CC in micro- and hypergravity as experienced in parabolic flight. The decision to bring extra load for a high impact and low likelihood event should be based on specifics of its crew's mission and health status, and the establishment of standard operating procedures.


Subject(s)
Cardiopulmonary Resuscitation , Hypergravity , Space Flight , Weightlessness , Cardiopulmonary Resuscitation/methods , Humans , Manikins
3.
J Am Heart Assoc ; 10(23): e021090, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34854317

ABSTRACT

Background Helicopter emergency medical services personnel operating in mountainous terrain are frequently exposed to rapid ascents and provide cardiopulmonary resuscitation (CPR) in the field. The aim of the present trial was to investigate the quality of chest compression only (CCO)-CPR after acute exposure to altitude under repeatable and standardized conditions. Methods and Results Forty-eight helicopter emergency medical services personnel were divided into 12 groups of 4 participants; each group was assigned to perform 5 minutes of CCO-CPR on manikins at 2 of 3 altitudes in a randomized controlled single-blind crossover design (200, 3000, and 5000 m) in a hypobaric chamber. Physiological parameters were continuously monitored; participants rated their performance and effort on visual analog scales. Generalized estimating equations were performed for variables of CPR quality (depth, rate, recoil, and effective chest compressions) and effects of time, altitude, carryover, altitude sequence, sex, qualification, weight, preacclimatization, and interactions were analyzed. Our trial showed a time-dependent decrease in chest compression depth (P=0.036) after 20 minutes at altitude; chest compression depth was below the recommended minimum of 50 mm after 60 to 90 seconds (49 [95% CI, 46-52] mm) of CCO-CPR. Conclusions This trial showed a time-dependent decrease in CCO-CPR quality provided by helicopter emergency medical services personnel during acute exposure to altitude, which was not perceived by the providers. Our findings suggest a reevaluation of the CPR guidelines for providers practicing at altitudes of 3000 m and higher. Mechanical CPR devices could be of help in overcoming CCO-CPR quality decrease in helicopter emergency medical services missions. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT04138446.


Subject(s)
Aircraft , Altitude , Cardiopulmonary Resuscitation , Emergency Medical Services , Quality of Health Care , Cardiopulmonary Resuscitation/methods , Cardiopulmonary Resuscitation/standards , Cross-Over Studies , Emergency Medical Services/standards , Humans , Single-Blind Method
4.
J Clin Med ; 10(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923620

ABSTRACT

Cardiopulmonary resuscitation (CPR) is considered an aerosol-generating procedure. Consequently, COVID-19 resuscitation guidelines recommend the use of personal protective equipment (PPE) during resuscitation. In this simulation of randomised crossover trials, we investigated the influence of PPE on the quality of chest compressions (CCs). Thirty-four emergency medical service BLS-providers performed two 20 min CPR sequences (five 2 min cycles alternated by 2 min of rest) on manikins, once with and once without PPE, in a randomised order. The PPE was composed of a filtering facepiece 3 FFP3 mask, safety glasses, gloves and a long-sleeved gown. The primary outcome was defined as the difference between compression depth with and without PPE; secondary outcomes were defined as differences in CC rate, release and the number of effective CCs. The participants graded fatigue and performance, while generalised estimating equations (GEE) were used to analyse data. There was no significant difference in CC quality between sequences without and with PPE regarding depth (mean depth 54 ± 5 vs. 54 ± 6 mm respectively), rate (mean rate 119 ± 9 and 118 ± 6 compressions per minute), release (mean release 2 ± 2 vs. 2 ± 2 mm) and the number of effective CCs (43 ± 18 vs. 45 ± 17). The participants appraised higher fatigue when equipped with PPE in comparison to when equipped without PPE (p < 0.001), and lower performance was appraised when equipped with PPE in comparison to when equipped without PPE (p = 0.031). There is no negative effect of wearing PPE on the quality of CCs during CPR in comparison to not wearing PPE.

SELECTION OF CITATIONS
SEARCH DETAIL
...