Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 25(1): 361, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609853

ABSTRACT

BACKGROUND: Single-cell sequencing techniques are revolutionizing every field of biology by providing the ability to measure the abundance of biological molecules at a single-cell resolution. Although single-cell sequencing approaches have been developed for several molecular modalities, single-cell transcriptome sequencing is the most prevalent and widely applied technique. SPLiT-seq (split-pool ligation-based transcriptome sequencing) is one of these single-cell transcriptome techniques that applies a unique combinatorial-barcoding approach by splitting and pooling cells into multi-well plates containing barcodes. This unique approach required the development of dedicated computational tools to preprocess the data and extract the count matrices. Here we compare eight bioinformatic pipelines (alevin-fry splitp, LR-splitpipe, SCSit, splitpipe, splitpipeline, SPLiTseq-demultiplex, STARsolo and zUMI) that have been developed to process SPLiT-seq data. We provide an overview of the tools, their computational performance, functionality and impact on downstream processing of the single-cell data, which vary greatly depending on the tool used. RESULTS: We show that STARsolo, splitpipe and alevin-fry splitp can all handle large amount of data within reasonable time. In contrast, the other five pipelines are slow when handling large datasets. When using smaller dataset, cell barcode results are similar with the exception of SPLiTseq-demultiplex and splitpipeline. LR-splitpipe that is originally designed for processing long-read sequencing data is the slowest of all pipelines. Alevin-fry produced different down-stream results that are difficult to interpret. STARsolo functions nearly identical to splitpipe and produce results that are highly similar to each other. However, STARsolo lacks the function to collapse random hexamer reads for which some additional coding is required. CONCLUSION: Our comprehensive comparative analysis aids users in selecting the most suitable analysis tool for efficient SPLiT-seq data processing, while also detailing the specific prerequisites for each of these pipelines. From the available pipelines, we recommend splitpipe or STARSolo for SPLiT-seq data analysis.


Subject(s)
Computational Biology , Transcriptome , Data Analysis
2.
Eur J Cancer ; 177: 33-44, 2022 12.
Article in English | MEDLINE | ID: mdl-36323051

ABSTRACT

BACKGROUND: Metastatic castration-resistant prostate cancer (mCRPC) patients with positive AR-V7 expression in their circulating tumour cells (CTCs) rarely derive benefit from abiraterone and enzalutamide. DESIGN: We performed a prospective, multicenter, single arm phase II clinical trial (CABA-V7) in mCRPC patients previously treated with docetaxel and androgen deprivation therapy. OBJECTIVE: In this trial, we investigated whether cabazitaxel treatment resulted in clinically meaningful PSA response rates in patients with positive CTC-based AR-V7 expression and collected liquid biopsies for genomic profiling. RESULTS: Cabazitaxel was found to be modestly effective, with only 12% of these patients obtaining a PSA response. Genomic profiling revealed that CTC-based AR-V7 expression was not associated with other known mCRPC-associated alterations. CTC-based AR-V7 status and dichotomised CTC counts were observed as independent prognostic markers at baseline. CONCLUSIONS: AR-V7 positivity predicted poor overall survival (OS). However, cabazitaxel-treated AR-V7 positive patients and those lacking AR-V7 positivity, who received cabazitaxel as standard of care, appeared to have similar OS. Therefore, despite the low response rate, cabazitaxel may still be an effective treatment in this poor prognosis, AR-V7 positive patient population.


Subject(s)
Neoplastic Cells, Circulating , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/pathology , Prostate-Specific Antigen , Receptors, Androgen/metabolism , Androgen Antagonists/therapeutic use , Protein Isoforms/genetics , Neoplastic Cells, Circulating/pathology , Nitriles/therapeutic use
3.
J Clin Endocrinol Metab ; 103(1): 169-178, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29069456

ABSTRACT

Context: Despite the well-recognized clinical features resulting from insufficient or excessive thyroid hormone (TH) levels in humans, it is largely unknown which genes are regulated by TH in human tissues. Objective: To study the effect of TH on human gene expression profiles in whole blood, mainly consisting of T3 receptor (TR) α-expressing cells. Methods: We performed next-generation RNA sequencing on whole blood samples from eight athyroid patients (four females) on and after 4 weeks off levothyroxine replacement. Gene expression changes were analyzed through paired differential expression analysis and confirmed in a validation cohort. Weighted gene coexpression network analysis (WGCNA) was applied to identify thyroid state-related networks. Results: We detected 486 differentially expressed genes (fold-change >1.5; multiple testing corrected P value < 0.05), of which 76% were positively and 24% were negatively regulated. Gene ontology (GO) enrichment analysis revealed that three biological processes were significantly overrepresented, of which the process translational elongation showed the highest fold enrichment (7.3-fold, P = 1.8 × 10-6). WGCNA analysis independently identified various gene clusters that correlated with thyroid state. Further GO analysis suggested that thyroid state affects platelet function. Conclusions: Changes in thyroid state regulate numerous genes in human whole blood, predominantly TRα-expressing leukocytes. In addition, TH may regulate gene transcripts in platelets.


Subject(s)
Biomarkers/metabolism , Blood Platelets/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental/drug effects , Receptors, Thyroid Hormone/metabolism , Thyroid Gland/metabolism , Thyroxine/pharmacology , Blood Platelets/drug effects , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Prognosis , Thyroid Gland/drug effects , Thyroid Gland/pathology
4.
Stem Cells Dev ; 25(8): 586-97, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26914168

ABSTRACT

Mesenchymal stromal cells (MSC) are increasingly used as an investigative therapeutic product for immune disorders and degenerative disease. Typically, MSC are isolated from human tissue, expanded in culture, and cryopreserved until usage. The safety and efficacy of MSC therapy will depend on the phenotypical and functional characteristics of MSC. The freeze-thawing procedure may change these characteristics. Furthermore, the cells encounter a microenvironment after administration that may impact their properties. It has been demonstrated that the majority of MSC localize to the lungs after intravenous infusion, making this the site to study the effects of the in vivo milieu on administered MSC. In this study, we investigated the effect of freeze-thawing and the mouse lung microenvironment on human adipose tissue-derived MSC. There were effects of freeze-thawing on the whole genome expression profile of MSC, although the effects did not exceed interdonor differences. There were no major changes in the expression of hemostatic regulators on transcriptional level, but significantly increased expression of procoagulant tissue factor on the surface of thawed adipose MSC, correlating with increased procoagulant activity of thawed cells. Exposure for 2 h to the lung microenvironment had a major effect on MSC gene expression and affected several immunological pathways. This indicates that MSC undergo functional changes shortly after infusion and this may influence the efficacy of MSC to modulate inflammatory responses. The results of this study demonstrate that MSC rapidly alter in response to the local milieu and disease-specific conditions may shape MSC after administration.


Subject(s)
Cryopreservation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Transcriptome , Animals , Cells, Cultured , Chemokines/genetics , Chemokines/metabolism , Female , Freezing , Homeostasis , Humans , Infusions, Intravenous , Lung/immunology , Lung/metabolism , Metabolic Networks and Pathways , Mice, Inbred C57BL
5.
J Immunol ; 194(11): 5282-93, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25917092

ABSTRACT

Expansion of Ag-specific naturally occurring regulatory T cells (nTregs) is required to obtain sufficient numbers of cells for cellular immunotherapy. In this study, different allogeneic stimuli were studied for their capacity to generate functional alloantigen-specific nTregs. A highly enriched nTreg fraction (CD4(+)CD25(bright)CD127(-) T cells) was alloantigen-specific expanded using HLA-mismatched immature, mature monocyte-derived dendritic cells (moDCs), or PBMCs. The allogeneic mature moDC-expanded nTregs were fully characterized by analysis of the demethylation status within the Treg-specific demethylation region of the FOXP3 gene and the expression of both protein and mRNA of FOXP3, HELIOS, CTLA4, and cytokines. In addition, the Ag-specific suppressive capacity of these expanded nTregs was tested. Allogeneic mature moDCs and skin-derived DCs were superior in inducing nTreg expansion compared with immature moDCs or PBMCs in an HLA-DR- and CD80/CD86-dependent way. Remarkably, the presence of exogenous IL-15 without IL-2 could facilitate optimal mature moDC-induced nTreg expansion. Allogeneic mature moDC-expanded nTregs were at low ratios (<1:320), potent suppressors of alloantigen-induced proliferation without significant suppression of completely HLA-mismatched, Ag-induced proliferation. Mature moDC-expanded nTregs were highly demethylated at the Treg-specific demethylation region within the FOXP3 gene and highly expressed of FOXP3, HELIOS, and CTLA4. A minority of the expanded nTregs produced IL-10, IL-2, IFN-γ, and TNF-α, but few IL-17-producing nTregs were found. Next-generation sequencing of mRNA of moDC-expanded nTregs revealed a strong induction of Treg-associated mRNAs. Human allogeneic mature moDCs are highly efficient stimulator cells, in the presence of exogenous IL-15, for expansion of stable alloantigen-specific nTregs with superior suppressive function.


Subject(s)
Dendritic Cells/drug effects , Interleukin-15/pharmacology , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , B7-1 Antigen/metabolism , B7-2 Antigen/metabolism , Base Sequence , CD4 Antigens/metabolism , CTLA-4 Antigen/biosynthesis , CTLA-4 Antigen/genetics , Cell Differentiation/immunology , Cell Proliferation , Cells, Cultured , DNA Methylation , Dendritic Cells/immunology , Forkhead Transcription Factors/biosynthesis , Forkhead Transcription Factors/genetics , HLA-DR Antigens/immunology , Humans , Ikaros Transcription Factor/biosynthesis , Ikaros Transcription Factor/genetics , Interferon-gamma/biosynthesis , Interleukin-10/biosynthesis , Interleukin-15/immunology , Interleukin-17/biosynthesis , Interleukin-2/biosynthesis , Interleukin-2/metabolism , Interleukin-2 Receptor alpha Subunit/metabolism , Interleukin-7 Receptor alpha Subunit/metabolism , Sequence Analysis, RNA , Skin/cytology , Skin/immunology , Tumor Necrosis Factor-alpha/biosynthesis
6.
Epigenetics Chromatin ; 5(1): 9, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22726460

ABSTRACT

BACKGROUND: Non-small cell lung carcinoma (NSCLC) is a complex malignancy that owing to its heterogeneity and poor prognosis poses many challenges to diagnosis, prognosis and patient treatment. DNA methylation is an important mechanism of epigenetic regulation involved in normal development and cancer. It is a very stable and specific modification and therefore in principle a very suitable marker for epigenetic phenotyping of tumors. Here we present a genome-wide DNA methylation analysis of NSCLC samples and paired lung tissues, where we combine MethylCap and next generation sequencing (MethylCap-seq) to provide comprehensive DNA methylation maps of the tumor and paired lung samples. The MethylCap-seq data were validated by bisulfite sequencing and methyl-specific polymerase chain reaction of selected regions. RESULTS: Analysis of the MethylCap-seq data revealed a strong positive correlation between replicate experiments and between paired tumor/lung samples. We identified 57 differentially methylated regions (DMRs) present in all NSCLC tumors analyzed by MethylCap-seq. While hypomethylated DMRs did not correlate to any particular functional category of genes, the hypermethylated DMRs were strongly associated with genes encoding transcriptional regulators. Furthermore, subtelomeric regions and satellite repeats were hypomethylated in the NSCLC samples. We also identified DMRs that were specific to two of the major subtypes of NSCLC, adenocarcinomas and squamous cell carcinomas. CONCLUSIONS: Collectively, we provide a resource containing genome-wide DNA methylation maps of NSCLC and their paired lung tissues, and comprehensive lists of known and novel DMRs and associated genes in NSCLC.

SELECTION OF CITATIONS
SEARCH DETAIL
...