Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Thromb Haemost ; 8(12): 2800-9, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20946180

ABSTRACT

BACKGROUND: Fibrin is a temporary matrix that not only seals a wound, but also provides a temporary matrix structure for invading cells during wound healing. Two naturally occurring fibrinogen variants, high molecular weight (HMW) and low molecular weight (LMW) fibrinogen, display different properties in supporting angiogenesis in vivo and in vitro. OBJECTIVES: This study was aimed at investigating the functional characteristics and molecular mechanisms of human microvascular endothelial cells (HMVECs) cultured on HMW and LMW fibrin matrices. METHODS AND RESULTS: HMVECs on HMW fibrin matrices showed increased proliferation and tube formation as compared with their counterparts on unfractionated and LMW fibrin. Degradation of HMW fibrin was markedly enhanced by the presence of HMVECs, that of LMW fibrin was enhanced only slightly. However, the expression levels of fibrinolysis-regulating proteins and integrins were similar. Subsequent microarray analysis revealed that the expression of 377 genes differed significantly between HMVECs cultured on HMW fibrin and those cultured on LMW fibrin. Among these genes, UNC5B, DLL4 and the DLL4-Notch downstream targets Hey1, Hey2 and Hes1 showed increased expression in HMVECs on LMW fibrin. However, pharmacologic and genetic (DLL4 small interfering RNA) inhibition of DLL4-Notch signaling blunted rather than enhanced proliferation and tube formation by HMVECs on both fibrin variants. CONCLUSIONS: Heterogeneity in naturally occurring fibrinogen strongly influences endothelial cell proliferation and tube formation, and causes alterations in gene expression, including that of DLL4-Notch. The higher fibrinolytic sensitivity of HMW fibrin in the presence of HMVECs contributes to increased tube formation. Although the expression of DLL4-Notch was altered, it did not explain the enhanced tube formation in HMW fibrin. This study provides new perspectives for biological and tissue engineering applications.


Subject(s)
Endothelium, Vascular/metabolism , Fibrinogen/physiology , Gene Expression Regulation/physiology , Cell Adhesion , Cell Proliferation , Cells, Cultured , Culture Media , Endothelium, Vascular/cytology , Endothelium, Vascular/enzymology , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibrinogen/chemistry , Fibrinolysis , Humans , Integrins/metabolism , Molecular Weight , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Proto-Oncogene Proteins c-akt/metabolism
2.
Kidney Int ; 57(6): 2608-17, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10844631

ABSTRACT

BACKGROUND: The aim of this study was to develop a model for hemodialysis (HD) in small animals using conventional dialysis equipment that would allow the intravital microscopic observation of leukocyte-endothelial interactions in vivo. METHODS: Cuprophan dialyzers were adapted to obtain a similar ratio of membrane area to blood volume as in clinical HD. A silicone ring was inserted into the dialyzer's inlet to limit the number of blood-perfused capillaries. Rabbits were dialyzed for one hour without a dialysate flow. RESULTS: Extracorporeal circulation with the cuprophan dialyzer resulted in a transient leukopenia and complement activation. At the nadir of leukopenia, leukocytes that rolled along the venular wall were scarcely observed, whereas rolling was abundant (54 +/- 9 per min) prior to extracorporeal circulation. The adhesion of leukocytes to the vascular endothelium was not induced. After 60 minutes, rolling of leukocytes was still reduced by 73 +/- 5.5%, despite the full recovery of circulating leukocyte counts. Extracorporeal circulation without a dialyzer also tended to reduce leukocyte rolling, although systemic leukocyte counts were not affected. CONCLUSIONS: The use of adapted conventional cuprophan hemodialyzers in rabbits yielded a transient leukopenia similar to that in clinical HD. Using intravital microscopy, we demonstrated impairment of leukocyte-endothelial interactions. In addition, our data indicate that tissues, in which leukocytes can roll and adhere, are not automatically sites of leukocyte sequestration during HD-induced leukopenia.


Subject(s)
Endothelium, Vascular/physiology , Leukocytes/physiology , Renal Dialysis , Animals , Biocompatible Materials , Cell Adhesion , Cellulose/analogs & derivatives , Complement Activation , Equipment Design , Extracorporeal Circulation , Leukocyte Count , Leukocytes/cytology , Leukopenia/etiology , Rabbits , Renal Dialysis/adverse effects , Renal Dialysis/instrumentation , Splanchnic Circulation
3.
Am J Physiol ; 277(4): H1375-84, 1999 10.
Article in English | MEDLINE | ID: mdl-10516172

ABSTRACT

The classic idea about regulation of cardiac oxidative phosphorylation (OxPhos) was that breakdown products of ATP (ADP and P(i)) diffuse freely to the mitochondria to stimulate OxPhos. On the basis of this metabolic feedback control system, the response time of OxPhos (t(mito)) is predicted to be inversely proportional to the mitochondrial aerobic capacity (MAC). We determined t(mito) during steps in heart rate in isolated perfused rabbit hearts (n = 16) before and after reducing MAC with nonsaturating doses of oligomycin. The reduction of MAC was quantified in mitochondria isolated from each perfused heart, dividing oligomycin-sensitive, ADP-stimulated state 3 respiration by oligomycin-insensitive uncoupled respiration. The t(mito) to heart rate steps from 60 to 70 and 80 beats/min was 5. 6 +/- 0.6 and 7.2 +/- 0.8 s (means +/- SE) and increased an estimated 34 and 40% for a 50% decrease in MAC (P < 0.05), respectively, which is much less than the 100% predicted by the feedback hypothesis. For steps to 100 or 120 beats/min, t(mito) was 8.3 +/- 0.5 and 11.2 +/- 0.6 s and was not reduced with decreases in MAC (P > 0.05). We conclude that immediate feedback control by quickly diffusing ADP and P(i) cannot explain the dynamic regulation of cardiac OxPhos. Because calcium entry into the mitochondria also cannot explain the first fast phase of OxPhos activation, we propose that delay of the energy-related signal in the cytoplasm dominates the response time of OxPhos.


Subject(s)
Myocardium/metabolism , Adaptation, Physiological , Animals , Enzyme Inhibitors/pharmacology , Feedback , Homeostasis , In Vitro Techniques , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Myocardial Contraction , Oligomycins/pharmacology , Oxidative Phosphorylation , Oxygen Consumption/drug effects , Phosphates/metabolism , Phosphocreatine/metabolism , Rabbits , Reaction Time
4.
Am J Physiol ; 276(1): H134-40, 1999 01.
Article in English | MEDLINE | ID: mdl-9887026

ABSTRACT

The effect of graded creatine kinase (CK) inhibition on the response time of mitochondrial O2 consumption to dynamic workload jumps (tmito) was studied in isolated rabbit hearts. Tyrode-perfused hearts (n = 7/group) were exposed to 15 min of 0, 0.1, 0.2, or 0.4 mM iodoacetamide (IA) (CK activity = 100, 14, 6, and 3%, respectively). Pretreatment tmito was similar across groups at 6.5 +/- 0.5 s (mean +/- SE). The increase observed over time in control hearts (33 +/- 8%) was progressively reversed to 16 +/- 6, -20 +/- 6 (P < 0.01 vs. control), and -46 +/- 6 (P < 0.01 vs. control) % in the 0.1, 0.2 and 0.4 mM IA groups, respectively. The faster response times occurred without reductions in mitochondrial oxidative capacity (assessed in vitro) or myocardial O2 consumption of the whole heart during workload steps. Isovolumic contractile function assessed as rate-pressure product (RPP) and contractile reserve (increase in RPP during heart rate steps) were significantly reduced by IA. We conclude that CK in the myofibrils and/or cytosol does not speed up transfer of the energy-related signal to the mitochondria but rather acts as an energetic buffer, effectively slowing the stimulus between myofibrils/ion pumps and oxidative phosphorylation. This argues against the existence of an obligatory creatine phosphate energy shuttle, because CK is effectively bypassed.


Subject(s)
Creatine Kinase/antagonists & inhibitors , Cytosol/metabolism , Energy Metabolism/physiology , Myocardial Contraction/physiology , Myocardium/metabolism , Signal Transduction/physiology , Animals , Creatine Kinase/metabolism , Energy Metabolism/drug effects , Hemodynamics/drug effects , In Vitro Techniques , Iodoacetamide/pharmacology , Male , Myocardial Contraction/drug effects , Oxygen Consumption/drug effects , Rabbits , Signal Transduction/drug effects , Time Factors
5.
Am J Physiol ; 265(6 Pt 2): H2081-5, 1993 Dec.
Article in English | MEDLINE | ID: mdl-8285247

ABSTRACT

We investigated whether a glycolytic burst contributes to the initial adaptation of ATP synthesis to increased cardiac metabolic demand. Six isolated rabbit hearts were perfused with glucose-containing Tyrode solution at 28 degrees C. In venous and arterial samples the lactate concentration was determined with a sensitive enzymatic cycling method. After the heart rate was doubled from 60 to 120 beats/min, lactate efflux increased from 0.23 +/- 0.10 (SE) to 0.45 +/- 0.12 mumol.min-1.g-1 dry weight with a mean response time of 21.3 s but without an overshoot. The transport time for lactate is longer than 15.7 s, suggesting that lactate production adapts with a mean response time of less than 6 s. Because no overshoot in lactate efflux was found, it is unlikely that a glycolytic burst after a step in heart rate contributes to the fast adaptation of ATP synthesis to demand in the isolated rabbit heart, although it might be possible that a change in cytosolic lactate production is not reflected in an increase in lactate efflux. Extrapolation of the results of this study to the in vivo situation should be done with caution.


Subject(s)
Heart Rate , Lactates/metabolism , Myocardium/metabolism , Animals , Female , Glucose , Hypoxia/metabolism , Hypoxia/physiopathology , In Vitro Techniques , Lactic Acid , Male , Osmolar Concentration , Perfusion , Rabbits
6.
J Physiol ; 447: 17-31, 1992 Feb.
Article in English | MEDLINE | ID: mdl-1593446

ABSTRACT

1. In this study we determined the temperature dependence of the mean response time of cardiac mitochondrial oxygen consumption following steps in metabolic demand. Metabolic demand was altered by stepwise changes in heart rate or in left ventricular volume at 20 and 28 degrees C. 2. Ten isolated rabbit hearts were perfused with Tyrode solution at constant oxygen tension and constant arterial flow. A balloon was inserted in the left ventricle and developed pressure was measured. Coronary venous oxygen tension was measured continuously with a Clark-type oxygen electrode. 3. The mean response time of mitochondrial oxygen consumption is defined as the first statistical moment of the impulse response function. This mean response time of mitochondrial oxygen consumption, following the change in metabolic demand, is calculated from the measured mean response time for the change in coronary venous oxygen tension by subtracting the transport time resulting from diffusion and convective transport in the blood vessels. The transport time is obtained from a model for oxygen transport developed previously. Experimental data, necessary for the model calculation, were obtained from measurement of the coronary venous oxygen tension transients following stepwise changes either in arterial oxygen tension or perfusion flow. 4. The calculated mean response times of mitochondrial oxygen consumption were 26.9 +/- 3.0 s (mean +/- S.E.M.) at 20 degrees C and 14.9 +/- 1.0 s at 28 degrees C. The mean response times of mitochondrial oxygen consumption did not differ significantly for steps in heart rate and in left ventricular volume and between upward and downward steps. 5. We suggest that intracellular calcium concentration is not the sole regulator of mitochondrial oxygen consumption in the isolated rabbit heart, since steps in heart rate and in left ventricular volume showed the same time course of oxygen uptake. 6. The mean response time of mitochondrial oxygen consumption obtained in the isolated rabbit heart at 20 degrees C did not differ significantly from the mean response time of mitochondrial oxygen consumption of isolated rabbit papillary muscle. After combining our data with previously published data on empty beating hearts at 37 degrees C, a Q10, which is the factor by which the mean response time of mitochondrial oxygen consumption increases per 10 degrees C decrease in temperature, of 2.1 was calculated.


Subject(s)
Mitochondria, Heart/metabolism , Oxygen Consumption/physiology , Reaction Time/physiology , Temperature , Animals , Blood Pressure/physiology , Coronary Circulation/physiology , Heart Rate/physiology , Mitochondria, Heart/physiology , Rabbits , Stroke Volume/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...