Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Pharmaceutics ; 14(7)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35890409

ABSTRACT

Stage III-IV non-small cell lung cancer (NSCLC) is a devastating disease characterized by a poor prognosis. NSCLC tumors carry genetic mutations, which can lead to the expression of altered protein sequences. Peptides originating from mutated proteins and bound to MHC molecules on the tumor cell surface are referred to as neoantigens, as they are tumor-specific and not expressed in normal cells. Due to their tumor specificity, neoantigens have a strong potential to induce an anti-tumor immune response and have been investigated for development of personalized therapeutic cancer vaccines. The current study describes the development of a clinical grade neoantigen vaccine formulation (FRAME-001) intended as immunotherapy in advanced NSCLC in combination with the immune checkpoint inhibitor pembrolizumab. The detection of aberrant tumor-specific transcripts as well as an algorithm to select immunogenic neoantigen peptides are described. Subsequently, selected neoantigen peptides were synthesized with a high throughput synthesis platform and aseptically formulated under good manufacturing practice (GMP) conditions into four aqueous peptides mixtures that each contained six neoantigen peptides. A validated stability-indicating analytical method was developed in which we considered the personalized nature of the formulation. An extensive stability study performed either at -25 °C or -80 °C showed that the formulation was stable for up to 32 weeks. The formulation was mixed with the vaccine adjuvant Montanide ISA 51 VG, which yielded the final vaccine emulsion. The stability of the vaccine emulsion was demonstrated using microscopic examination, differential light scattering, and the water-drop test. The presented data show that FRAME-001 is a feasible personalized vaccine formulation for the treatment of stage III-IV NSCLC. The presented data may give guidance in the development of novel personalized therapeutic vaccines since this formulation strategy could be used for any cancer indication.

2.
J Immunol ; 179(2): 1362-8, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17617629

ABSTRACT

The human pancarcinoma-associated epithelial cell adhesion molecule (EpCAM) (EGP-2, CO17-1A) is a well-known target for carcinoma-directed immunotherapy. Mouse-derived mAbs directed to EpCAM have been used to treat colon carcinoma patients showing well-tolerable toxic side effects but limited antitumor effects. Humanized or fully human anti-EpCAM mAbs may induce stronger antitumor activity, but proved to produce severe pancreatitis upon use in patients. To evaluate treatment-associated effects before a clinical trial, we have generated a transgenic mouse tumor model that expresses human EpCAM similar to carcinoma patients. In this study, we use this model to study the in vivo behavior of two humanized and one mouse-derived anti-EpCAM mAb, i.e., MOC31-hFc, UBS54, and MOC31. The pharmacokinetics and tissue distribution of the fully human mAb UBS54 and the mouse-derived MOC31 were largely the same after injection in tumor-bearing transgenic mice, whereas the molecularly engineered, humanized MOC31-hFc behaved differently. Injection of UBS54 and MOC31 resulted in significant, dose-dependent uptake of mAb in EpCAM-expressing normal and tumor tissues, accompanied by a drop in serum level, whereas injection of MOC31-hFc resulted in uptake in tumor tissue, limited uptake by normal tissues, and slow blood clearance. It is concluded that the EpCAM-transgenic mouse model provides valuable insights into the potential behavior of humanized anti-EpCAM mAbs in patients. mAbs sharing the same epitope and isotype but constructed differently were shown to behave differently in the model, indicating that the design of mAbs is important for eventual success in in vivo application.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/immunology , Immunotherapy/methods , Neoplasms, Experimental/immunology , Animals , Antibodies, Monoclonal/immunology , Disease Models, Animal , Epithelial Cell Adhesion Molecule , Humans , Immunohistochemistry , Mice , Mice, Transgenic , Tissue Distribution
3.
Cell Transplant ; 13(5): 515-24, 2004.
Article in English | MEDLINE | ID: mdl-15565864

ABSTRACT

Graft function of encapsulated islets is restricted in spite of the fact that inflammatory responses against capsules are limited to a portion less than 10%. It has been shown that dysfunction is accompanied by a gradual decrease in the glucose-induced insulin response (GIIR), a hyperproliferation of islet cells, and gradual necrosis. Also, limited survival is associated with the presence of macrophages in the overgrowth. In the present study, we investigate whether macrophages are the inducers of dysfunction of encapsulated grafts. Four weeks after successful transplantation of microencapsulated rat allografts we determined the GIIR, the rate of islet cell replication, and islet cell death. Also, we quantified the number of macrophages on the overgrown capsules. This assessment was applied to set up an in vitro coculture system of macrophages and encapsulated islets. We retrieved 93 +/- 6.2% of the capsules of which 9.2 +/- 0.3% was overgrown. The GIIR of the retrieved nonovergrown islets was reduced when compared with freshly encapsulated islets. The replication rate of the retrieved islet cells was eightfold higher than in the normal pancreas. Apoptosis was rarely observed but 37 +/- 4% of the total islet surface was composed of necrosis. We found a mean of 1542 +/- 217 macrophages per capsule. Coculture of 1500 NR8383 macrophages per encapsulated islets induced a substantial reduction in GIIR but a decrease instead of increase in replication. Necrosis was restricted to 13 +/- 1.3% of the islet cells and was not increased by the presence of macrophages. Our observations indicate that we should focus on reduction of macrophage activation and on improving the nutrition of encapsulated islets to prevent islet cell death.


Subject(s)
Graft Survival , Islets of Langerhans Transplantation/methods , Alginates/chemistry , Animals , Apoptosis , Blood Glucose/metabolism , Bromodeoxyuridine/pharmacology , Cell Culture Techniques , Cell Death , Cell Proliferation , Cell Survival , Cell Transplantation , Coculture Techniques , Diabetes Mellitus, Experimental/therapy , Drug Compounding , Glucose/metabolism , Graft Rejection , Insulin/metabolism , Islets of Langerhans/cytology , Macrophages/metabolism , Male , Necrosis , Polylysine/chemistry , Rats , Rats, Inbred Lew , Time Factors
4.
Cancer Gene Ther ; 11(2): 156-64, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14695757

ABSTRACT

In this study, we developed a nonviral, cationic, targeted DNA-carrier system by coupling SAINT/DOPE lipids to monoclonal antibodies. The two monoclonal antibodies used were both tumor specific, that is, MOC31 recognizes the epithelial glycoprotein EGP-2 present in carcinomas and Herceptin recognizes the HER-2/neu protein in breast and ovarian cancers. Coupling was performed under nonreducing conditions by covalent attachment. The coupling procedure appeared to be reproducible and the binding capacity of the antibody was not affected by linking them to the cationic lipid. Binding and transfection efficiency was assayed with target cells and nontarget cells. SAINT/DOPE lipoplexes as such appeared to be an effective transfection reagent for various cell lines. After coupling SAINT/DOPE to the monoclonal antibodies or F(ab)2 fragments, it was shown that the targeted MoAb-SAINT/DOPE lipoplexes preferably bound to target cells, compared to binding to the nontarget cells, especially for the Herceptin-SAINT/DOPE lipoplexes. More importantly, transfection of the target cells could also be improved with these targeted lipoplexes. In conclusion, we have shown that by using monoclonal antibody-coupled SAINT/DOPE lipoplexes cells targeted gene delivery can be achieved, and also a higher number of transfected target cells was seen.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Genetic Therapy/methods , Liposomes , Neoplasms/therapy , Transfection/methods , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal, Humanized , Cations/metabolism , Cell Line, Tumor , DNA/administration & dosage , DNA/metabolism , Gene Targeting , Humans , Immunoglobulin Fab Fragments/metabolism , Lipid Metabolism , Liposomes/metabolism , Melanoma/therapy , Mice , Phosphatidylethanolamines/metabolism , Plasmids , Skin Neoplasms/therapy , Trastuzumab
5.
Biomaterials ; 24(2): 305-12, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12419632

ABSTRACT

Transplantation of encapsulated living cells is a promising approach for the treatment of a wide variety of diseases. Large-scale application of the technique, however, is hampered by insufficient biocompatibility of the capsules. In the present study, we have implemented new as well as previously reported technologies to test biocompatibility issues of immunoisolating microcapsules on the long term (i.e. 2 years) instead of usually reported short time periods. When transplanted empty, the capsules proved to be highly biocompatible not only for short periods (i.e. 1 month) but also on the long term as evidenced by the absence of any significant biological response up to 2 years after implantation in rats. The immunoprotective properties of the capsules were confirmed by prolonged survival of encapsulated islet allografts up to 200 days. The surface of the applied capsule was analyzed and provides new insight in the chemical structure of true biocompatible and immunoprotective capsules applicable for transplantation of encapsulated islets in type I diabetes.


Subject(s)
Biocompatible Materials/chemistry , Islets of Langerhans/physiology , Animals , Drug Compounding , Electron Probe Microanalysis , Islets of Langerhans/chemistry , Male , Rats
SELECTION OF CITATIONS
SEARCH DETAIL