Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(31): 10987, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37497561

ABSTRACT

Correction for 'Catalytic exploration of NHC-Ag(I)HMDS complexes for the hydroboration and hydrosilylation of carbonyl compounds' by Claudia P. Giarrusso et al., Dalton Trans., 2023, 52, 7828-7835, https://doi.org/10.1039/D3DT01042B.

2.
ChemSusChem ; 15(20): e202200858, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-35875904

ABSTRACT

High intrinsic activity of oxygen evolution reaction (OER) catalysts is often limited by their low electrical conductivity. To address this, we introduce copper inverse opal (IO) frameworks offering a well-developed network of interconnected pores as highly conductive high-surface-area supports for thin catalytic coatings, for example, the extremely active but poorly conducting nickel-iron layered double hydroxides (NiFe LDH). Such composites exhibit significantly higher OER activity in 1 m KOH than NiFe LDH supported on a flat substrate or deposited as inverse opals. The NiFe LDH/Cu IO catalyst enables oxygen evolution rates of 100 mA cm-2 (727±4 A gcatalyst -1 ) at an overpotential of 0.305±0.003 V with a Tafel slope of 0.044±0.002 V dec-1 . This high performance is achieved with 2.2±0.4 µm catalyst layers, suggesting compatibility of the inverse-opal-supported catalysts with membrane electrolyzers, in contrast to similarly performing 103 -fold thicker electrodes based on foams and other substrates.

SELECTION OF CITATIONS
SEARCH DETAIL
...