Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Pathol ; 35(2): 226-32, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17366316

ABSTRACT

The effects of cyclosporin A (CY) and cyclophosphamide (CPS) on Peyer's patches (PP) were studied in Wistar rats, exposed in utero and neonatally or during adult age. In one study, pregnant dams received 5 or 15 mg/kg bw/day CY from gestation day 6 to day 21 of lactation. In two other studies, animals were exposed at young adult age: female rats received orally 5 or 20 mg/kg/day CY or 5 or 10 mg/kg bw CPS for 4 weeks; males received orally 5 mg/kg bw CPS for 4 weeks, or a single i.v. injection of 50 mg/kg bw CPS. Upon in utero and neonatal exposure, the numbers of grossly observed PP were increased in male pups from the high-dose CY dams at 70 days of age. Exposure to high-dose CY at adult age only tended to decrease the numbers of PP; germinal center development was reduced in the PP from the middle segment of the small intestines, as examined microscopically. Exposure to both doses CPS at adult age reduced the numbers of PP and reduced germinal centre development and the number of lymphocytes in all compartments of PP. It was concluded that the effects of CPS and CY could be established by counting the number of grossly visible PP and by microscopic observation of PP, provided that regional differences of PP were taken into account. Moreover, the type of effects of an immunotoxic agent may vary with age of exposure.


Subject(s)
Aging/pathology , Cyclophosphamide/pharmacology , Cyclosporine/pharmacology , Immunosuppressive Agents/pharmacology , Peyer's Patches/drug effects , Prenatal Exposure Delayed Effects/pathology , Administration, Oral , Animals , Cell Count , Cyclophosphamide/administration & dosage , Cyclosporine/administration & dosage , Female , Germinal Center/drug effects , Germinal Center/pathology , Immunosuppressive Agents/administration & dosage , Injections, Intravenous , Male , Peyer's Patches/pathology , Pregnancy , Rats , Rats, Wistar
2.
Food Chem Toxicol ; 41(8): 1089-102, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12842177

ABSTRACT

The cholesterol-lowering effect observed following consumption of oats and barley is attributable to the beta-glucan component of the soluble fiber fraction of these cereal grains. beta-Glucan has also been reported to modulate immune activity, however, few studies have evaluated the hematological effects of beta-glucan following oral exposure. In the current study, a concentrated beta-glucan (64%) preparation from barley (Barley Betafiber) was blended into mouse feed at concentrations of 1, 5, or 10% (corresponding to approximately 0.7, 3.5, and 7% beta-glucan) and evaluated in CD-1 mice. Plasma was collected for clinical chemistry and hematological measurements at the initiation of the study and again following 14 and 28 days of exposure. Plasma was also collected from animals that consumed the same diets for 28-days but were switched to control diet (containing no supplemental beta-glucan) for an additional 14-day period to evaluate reversibility or delayed occurrence of treatment-related changes. Half of the animals were sacrificed for histopathologic analysis following the 28-day exposure period and the other half were evaluated following the recovery period. Histopathologic analysis focused on primary lymphoid organs and lymph nodes proximal and distal to the route of exposure. An additional group of untreated animals (nai;ve) was bled and sacrificed at day 0, 14, 27 and 41 for comparison of the hematology parameters with those of the control group because it was not known if multiple blood draws would affect hematology parameters. Compared to animals consuming the control diet, no treatment-related adverse effects were observed in hematological or clinical chemistry measurements or in organ weights and immunopathology in either sex following consumption of concentrated barley beta-glucan for 28-days or following the recovery period. Likewise, no differences were observed between the nai;ve and control groups. Results from this study showed that consumption of concentrated barley beta-glucan did not cause treatment-related inflammatory or other adverse effects in CD-1 mice.


Subject(s)
Dietary Fiber/toxicity , Glucans/toxicity , Hordeum/chemistry , Animal Feed , Animals , Diet , Dietary Fiber/administration & dosage , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Glucans/administration & dosage , Hematologic Tests , Lymphoid Tissue/drug effects , Lymphoid Tissue/pathology , Male , Mice , Mice, Inbred Strains , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...