Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Brain Res ; 235(3): 731-742, 2017 03.
Article in English | MEDLINE | ID: mdl-27866262

ABSTRACT

The formation of oligomers and aggregates of overexpressed or mutant α-synuclein play a role in the degeneration of dopaminergic neurons in Parkinson's disease by causing dysfunction of mitochondria, reflected in their disturbed mobility and production of ROS. The mode of action and mechanisms underlying this mitochondrial impairment is still unclear. We have induced stable expression of wild-type, A30P or A53T α-synuclein in neuronally differentiated SH-SY5Y neuroblastoma cells and studied anterograde and retrograde mitochondrial trafficking in this cell model for Parkinson's disease. In contrast to wild-type and A30P, A53T α-synuclein significantly inhibited mitochondrial trafficking, at first retrogradely and in a later stage anterogradely. Accordingly, A53T α-synuclein also caused the highest increase in ROS production in the dysmobilized mitochondria in comparison to wild-type or A30P α-synuclein. Treatment with NAP, the eight amino acid peptide identified as the active component of activity-dependent neuroprotective protein (ADNP), completely annihilated the adverse effects of A53T on mitochondrial dynamics. Our results reveal that A53T α-synuclein (oligomers or aggregates) leads to the inhibition of mitochondrial trafficking, which can be rescued by NAP, suggesting the involvement of microtubule disruption in the pathophysiology of Parkinson's disease.


Subject(s)
Mitochondria/drug effects , Mitochondria/genetics , Oligopeptides/pharmacology , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Alanine/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line, Tumor , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Kymography , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Membrane Potential, Mitochondrial/drug effects , Membrane Potential, Mitochondrial/genetics , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mitochondria/pathology , Neuroblastoma/pathology , Neuroblastoma/ultrastructure , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Threonine/genetics , Transfection , alpha-Synuclein/chemistry
2.
Brain Behav Immun ; 48: 205-21, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25843371

ABSTRACT

Microglia, the innate immune cells of the central nervous system (CNS), react to endotoxins like bacterial lipopolysaccharides (LPS) with a pronounced inflammatory response. To avoid excess damage to the CNS, the microglia inflammatory response needs to be tightly regulated. Here we report that a single LPS challenge results in a prolonged blunted pro-inflammatory response to a subsequent LPS stimulation, both in primary microglia cultures (100 ng/ml) and in vivo after intraperitoneal (0.25 and 1mg/kg) or intracerebroventricular (5 µg) LPS administration. Chromatin immunoprecipitation (ChIP) experiments with primary microglia and microglia acutely isolated from mice showed that LPS preconditioning was accompanied by a reduction in active histone modifications AcH3 and H3K4me3 in the promoters of the IL-1ß and TNF-α genes. Furthermore, LPS preconditioning resulted in an increase in the amount of repressive histone modification H3K9me2 in the IL-1ß promoter. ChIP and knock-down experiments showed that NF-κB subunit RelB was bound to the IL-1ß promoter in preconditioned microglia and that RelB is required for the attenuated LPS response. In addition to a suppressed pro-inflammatory response, preconditioned primary microglia displayed enhanced phagocytic activity, increased outward potassium currents and nitric oxide production in response to a second LPS challenge. In vivo, a single i.p. LPS injection resulted in reduced performance in a spatial learning task 4 weeks later, indicating that a single inflammatory episode affected memory formation in these mice. Summarizing, we show that LPS-preconditioned microglia acquire an epigenetically regulated, immune-suppressed phenotype, possibly to prevent excessive damage to the central nervous system in case of recurrent (peripheral) inflammation.


Subject(s)
Epigenesis, Genetic , Gene Silencing , Lipopolysaccharides/pharmacology , Microglia/metabolism , Transcription Factor RelB/metabolism , Animals , Histones/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Mice , Microglia/drug effects , NF-kappa B/genetics , NF-kappa B/metabolism , Promoter Regions, Genetic , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...