Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(5 Pt 1): 051301, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16383597

ABSTRACT

We investigate the idea that velocity distributions in granular gases are determined mainly by eta, the coefficient of restitution and q, which measures the relative importance of heating (or energy input) to collisions. To this end, we study by numerical simulation the properties of inelastic gases as functions of eta, concentration phi, and particle number N with various heating mechanisms. For a wide range of parameters, we find Gaussian velocity distributions for uniform heating and non-Gaussian velocity distributions for boundary heating. Comparison between these results and velocity distributions obtained by other heating mechanisms and for a simple model of a granular gas without spatial degrees of freedom, shows that uniform and boundary heating can be understood as different limits of q, with q>>1 and q < or approximately 1 respectively. We review the literature for evidence of the role of q in the recent experiments.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(4 Pt 1): 040301, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15600385

ABSTRACT

Our experiments and three-dimensional molecular dynamics simulations of particles confined to a vertical monolayer by closely spaced frictional walls (sidewalls) yield velocity distributions with non-Gaussian tails and a peak near zero velocity. Simulations with frictionless sidewalls are not peaked. Thus interactions between particles and their containers are an important determinant of the shape of the distribution and should be considered when evaluating experiments on a constrained monolayer of particles.

3.
Phys Rev Lett ; 93(3): 038001, 2004 Jul 16.
Article in English | MEDLINE | ID: mdl-15323873

ABSTRACT

Motivated by recent experiments reporting non-Gaussian velocity distributions in driven dilute granular materials, we study by numerical simulation the properties of 2D inelastic gases. We find theoretically that the form of the observed velocity distribution is governed primarily by the coefficient of restitution eta and q=N(H)/N(C), the ratio between the average number of heatings and the average number of collisions in the gas. The differences in distributions we find between uniform and boundary heating can then be understood as different limits of q, for q>>1 and q less, similar 1, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...