Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 113(46): 12919-12924, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27803323

ABSTRACT

Collections of interacting, self-propelled particles have been extensively studied as minimal models of many living and synthetic systems from bird flocks to active colloids. However, the influence of active rotations in the absence of self-propulsion (i.e., spinning without walking) remains less explored. Here, we numerically and theoretically investigate the behavior of ensembles of self-spinning dimers. We find that geometric frustration of dimer rotation by interactions yields spatiotemporal order and active melting with no equilibrium counterparts. At low density, the spinning dimers self-assemble into a triangular lattice with their orientations phase-locked into spatially periodic phases. The phase-locked patterns form dynamical analogs of the ground states of various spin models, transitioning from the three-state Potts antiferromagnet at low densities to the striped herringbone phase of planar quadrupoles at higher densities. As the density is raised further, the competition between active rotations and interactions leads to melting of the active spinner crystal. Emergent edge currents, whose direction is set by the chirality of the active spinning, arise as a nonequilibrium signature of the transition to the active spinner liquid and vanish when the system eventually undergoes kinetic arrest at very high densities. Our findings may be realized in systems ranging from liquid crystal and colloidal experiments to tabletop realizations using macroscopic chiral grains.

2.
Soft Matter ; 10(23): 4192-8, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24780941

ABSTRACT

We present a theoretical study of director fields in toroidal geometries with degenerate planar boundary conditions. We find spontaneous chirality: despite the achiral nature of nematics the director configuration shows a handedness if the toroid is thick enough. In the chiral state the director field displays a double twist, whereas in the achiral state there is only bend deformation. The critical thickness increases as the difference between the twist and saddle-splay moduli grows. A positive saddle-splay modulus prefers alignment along the meridian of the bounding torus, and hence promotes a chiral configuration. The chiral-achiral transition mimics the order-disorder transition of the mean-field Ising model. The role of the magnetisation in the Ising model is played by the degree of twist. The role of the temperature is played by the aspect ratio of the torus. Remarkably, an external field does not break the chiral symmetry explicitly, but shifts the transition. In the case of toroidal cholesterics, we do find a preference for one chirality over the other - the molecular chirality acts as a field in the Ising analogy.

3.
Proc Natl Acad Sci U S A ; 110(23): 9295-300, 2013 Jun 04.
Article in English | MEDLINE | ID: mdl-23690570

ABSTRACT

We stabilize nematic droplets with handles against surface tension-driven instabilities, using a yield-stress material as outer fluid, and study the complex nematic textures and defect structures that result from the competition between topological constraints and the elasticity of the nematic liquid crystal. We uncover a surprisingly persistent twisted configuration of the nematic director inside the droplets when tangential anchoring is established at their boundaries, which we explain after considering the influence of saddle splay on the elastic free energy. For toroidal droplets, we find that the saddle-splay energy screens the twisting energy, resulting in a spontaneous breaking of mirror symmetry; the chiral twisted state persists for aspect ratios as large as ∼20. For droplets with additional handles, we observe in experiments and computer simulations that there are two additional -1 surface defects per handle; these are located in regions with local saddle geometry to minimize the nematic distortions and hence the corresponding elastic free energy.


Subject(s)
Liquid Crystals/chemistry , Models, Chemical , Molecular Conformation , Computer Simulation , Surface Tension
SELECTION OF CITATIONS
SEARCH DETAIL
...