Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurobiol ; 58(4): 467-78, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14978724

ABSTRACT

In the WAG/Rij rat, a model for human absence epilepsy, spike-wave discharges (SWD) and absence epileptic behavior develop after the age of 3 months. The rostral part of the reticular thalamic nucleus (rRTN) is involved in SWD. Ca(2+) channels play a central role in the initiation and maintenance of burst firing activity of thalamic cells. We hypothesize that a changed expression of alpha(1)-subunits of one or more high voltage-activated Ca(2+) channel types in the rRTN underlies the development of SWD. To test this hypothesis we compared 3- and 6-month-old WAG/Rij rats with nonepileptic, age-matched control rats. By immunocytochemistry, the expressions of alpha(1)1.3-, alpha(1)2.1-, alpha(1)2.2-, and alpha(1)2.3-subunits were shown in both strains, demonstrating the presence of Ca(v)1.3, Ca(v)2.1, Ca(v)2.2, and Ca(v)2.3 channels, respectively. Quantification of channel expression indicates that the development of SWD in WAG/Rij rats is concomitant with an increased expression of Ca(v)2.1 channels in the rRTN. These channels are mainly presynaptic, as revealed by double immunofluorescence involving the presynapse marker syntaxin. The mechanism by which this increase could be related to the occurrence of SWD has been discussed.


Subject(s)
Calcium Channels/biosynthesis , Epilepsy, Absence/metabolism , Gene Expression Regulation/physiology , Thalamic Nuclei/metabolism , Animals , Calcium Channels/genetics , Epilepsy, Absence/genetics , Male , Rats , Rats, Inbred ACI
2.
Neurosci Res ; 48(1): 21-31, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14687878

ABSTRACT

The adult WAG/Rij rat is a well-established animal model for human absence epilepsy characterized by the presence of spike-wave discharges (SWDs). The pacemaking activity of the rostral reticular thalamic nucleus (rRTN) has been demonstrated to be essential for SWD maintenance. We investigated if SWD maintenance can be related to the synaptic organization of the rRTN, by studying the ultrastructure of the rRTN of absence epileptic WAG/Rij rats in comparison with that of non-epileptic, age-matched ACI control rats. In WAG/Rij rats, D-, L- and F-type terminals constitute the synaptic organization of the rRTN. D-type synapses, especially axo-dendritic ones, occur frequently. L- and F-type terminals are common but less frequent than D-type terminals. Semi-quantitative observations indicate that all terminal types are present on different parts of the postsynaptic neuron, but in different numbers: they are frequent on dendrites, common on somata and axons, and occur occasionally on dendritic spines. In addition, occasionally an F-type terminal was observed on the axon hillock. The three terminal types are also involved in multiple synaptic configurations, convergent as well as divergent, with dendrites, somata, axon hillocks and axons as postsynaptic structures. Convergent synaptic configurations outnumber divergent ones. The synaptic organization of the rRTN of the non-epileptic ACI rat appears to be very similar to that of the epileptic WAG/Rij rat. This indicates that SWD maintenance in the WAG/Rij rat does not depend on a different synaptic organization of the rRTN.


Subject(s)
Epilepsy, Absence/pathology , Synapses/pathology , Thalamic Nuclei/pathology , Animals , Dendrites , Disease Models, Animal , Male , Microscopy, Electron/methods , Neurons/ultrastructure , Rats , Rats, Inbred Strains , Synapses/classification , Synapses/ultrastructure , Thalamic Nuclei/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...