Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
HardwareX ; 12: e00342, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35942180

ABSTRACT

A newly developed Boron-based Large-scale Observation of Soil Moisture (or BLOSM) system is currently being tested and implemented. The stationary system provides a cost-effective way to measure fast and thermalized neutrons by using low-cost, non-hazardous and accessible materials and equipment. BLOSM operates by measuring cosmic-ray induced neutrons and by comparing the amount of fast neutrons with the amount of thermal neutrons. Fast neutrons are moderated by hydrogen atoms in the air, organic materials, and especially and primarily by water in the soil, causing the ratio between fast and thermal to be a strong indicator of soil moisture content. The fast/thermal ratio is representative for soil moisture a scale of about 30 hectares, while standard soil moisture measurements are representative for less than a square meter. This is a well-established fact but present neutron detectors are very costly. Thanks to the low-cost of the probe, BLOSM can eventually be applied at a large scale and significantly increase the number of soil-water data points thereby enabling improvement of existing hydrology models as well as new applications such as monitoring fire hazards and agricultural droughts. Here, we present the build and first tests in the laboratory. We show that BLOSM can indeed measure fast and thermal neutrons, which opens the way to applications outside the laboratory.

2.
Sensors (Basel) ; 22(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35336435

ABSTRACT

Low-cost dual-frequency receivers and antennas have created opportunities for a wide range of new applications, in regions and disciplines where traditional GNSS equipment is unaffordable. However, the major drawback of using low-cost antenna equipment is that antenna phase patterns are typically poorly defined. Therefore, the noise in tropospheric zenith delay and coordinate time series is increased and systematic errors may occur. Here, we present a field calibration method that fully relies on low-cost solutions. It does not require costly software, uses low-cost equipment (~500 Euros), requires limited specialist expertise, and takes complex processing steps into the cloud. The application is more than just a relative antenna calibration: it is also a means to assess the quality and performance of the antenna, whether this is at a calibration site or directly in the field. We cover PCV calibrations, important for deformation monitoring, GNSS meteorology and positioning, and the computation of PCOs when the absolute position is of interest. The method is made available as an online web service. The performance of the calibration method is presented for a range of antennas of different quality and price in combination with a low-cost dual-frequency receiver. Carrier phase residuals of the low-cost antennas are reduced by 11-34% on L1 and 19-39% on L2, depending on the antenna type and ground plane used. For the cheapest antenna, when using a circular ground plane, the L1 residual is reduced from 3.85 mm before to 3.41 mm after calibration, and for L2 from 5.34 mm to 4.3 mm. The calibration reduces the Median Absolute Deviations (MADs) of the low-cost antennas in the vertical direction using Post Processed Kinematic (PPK) by 20-24%. For the cheapest antenna, the MAD is reduced from 5.6 to 3.8 mm, comparable to a geodetic-grade antenna (3.5 mm MAD). The calibration also has a positive impact on the Precise Point Positioning (PPP) results, delivering more precise results and reducing height biases.

3.
Proc Natl Acad Sci U S A ; 117(42): 26145-26150, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33020284

ABSTRACT

Irrigated agriculture contributes 40% of total global food production. In the US High Plains, which produces more than 50 million tons per year of grain, as much as 90% of irrigation originates from groundwater resources, including the Ogallala aquifer. In parts of the High Plains, groundwater resources are being depleted so rapidly that they are considered nonrenewable, compromising food security. When groundwater becomes scarce, groundwater withdrawals peak, causing a subsequent peak in crop production. Previous descriptions of finite natural resource depletion have utilized the Hubbert curve. By coupling the dynamics of groundwater pumping, recharge, and crop production, Hubbert-like curves emerge, responding to the linked variations in groundwater pumping and grain production. On a state level, this approach predicted when groundwater withdrawal and grain production peaked and the lag between them. The lags increased with the adoption of efficient irrigation practices and higher recharge rates. Results indicate that, in Texas, withdrawals peaked in 1966, followed by a peak in grain production 9 y later. After better irrigation technologies were adopted, the lag increased to 15 y from 1997 to 2012. In Kansas, where these technologies were employed concurrently with the rise of irrigated grain production, this lag was predicted to be 24 y starting in 1994. In Nebraska, grain production is projected to continue rising through 2050 because of high recharge rates. While Texas and Nebraska had equal irrigated output in 1975, by 2050, it is projected that Nebraska will have almost 10 times the groundwater-based production of Texas.


Subject(s)
Agricultural Irrigation/standards , Conservation of Water Resources/methods , Crops, Agricultural/growth & development , Edible Grain/growth & development , Groundwater/analysis , Models, Theoretical , Water Supply/standards , Water Resources/supply & distribution
4.
Nature ; 577(7791): 473-474, 2020 01.
Article in English | MEDLINE | ID: mdl-31969723
5.
Sci Total Environ ; 689: 258-268, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31280149

ABSTRACT

Urban pluvial flooding is one of the most costly natural hazards worldwide. Risks of flooding are expected to increase in the future due to global warming and urbanization. The complexity of the involved processes and the lack of long-term field observations means that many crucial aspects related to urban flood risks still remain poorly understood. In this paper, the possibility to gain new insight into urban pluvial flooding using citizen flood observations is explored. Using a ten-year dataset of radar rainfall maps and 70,000 citizen flood reports for the city of Rotterdam, we derive critical thresholds beyond which urban pluvial flooding is likely to occur. Three binary decision trees are trained for predicting flood occurrences based on peak rainfall intensities across different temporal scales. Results show that the decision trees correctly predict 37%-52% of all flood occurrences and 95%-97% of all non-flood occurrences, which is a fair performance given the uncertainties associated with citizen data. More importantly, all models agree on which rainfall features are the most important for predicting flooding, reaching optimal performance whenever short- and long-duration rainfall peak intensities are combined together to make a prediction. Additional feature selection using principal component analysis shows that further improvement is possible when critical rainfall thresholds are calculated using a linear combination of peak rainfall intensities across multiple temporal scales. The encouraging results suggest that citizen observatories, although prone to larger errors and uncertainties, constitute a valuable alternative source of information for gaining insight into urban pluvial flooding.

6.
Environ Monit Assess ; 190(5): 304, 2018 Apr 23.
Article in English | MEDLINE | ID: mdl-29687287

ABSTRACT

Land development without thoughtful water supply planning can lead to unsustainability. In practice, management of our lands and waters is often unintegrated. We present new land-use, ecological stream health, water quality, and streamflow data from nine perennial watersheds in the Kathmandu Valley, Nepal, in the 2016 monsoon (i.e., August and September) and 2017 pre-monsoon (i.e., April and May) periods. Our goal was to improve understanding of the longitudinal linkages between land-use and water. At a total of 38 locations, the Rapid Stream Assessment (RSA) protocol was used to characterize stream ecology, basic water quality parameters were collected with a handheld WTW multi-parameter meter, and stream flow was measured with a SonTek FlowTracker Acoustic Doppler Velocimeter. A pixel-based supervised classification method was used to create a 30-m gridded land use coverage from a Landsat 8 image scene captured in the fall of 2015. Our results indicated that land-use had a statistically significant impact on water quality, with built land-uses (high and low) having the greatest influence. Upstream locations of six of the nine watersheds investigated had near natural status (i.e., river quality class (RQC) 1) and water could be used for all purposes (after standard treatments as required). However, downstream RSA measurements for all nine watersheds had RQC 5 (i.e., most highly impaired). Generally, water quality deteriorated from monsoon 2016 to pre-monsoon 2017. Our findings reinforce the importance of integrated land and water management and highlight the urgency of addressing waste management issues in the Kathmandu Valley.


Subject(s)
Conservation of Natural Resources , Environmental Monitoring/methods , Rivers , Water Quality/standards , Water Supply/standards , Humans , Nepal
7.
Sensors (Basel) ; 17(9)2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28902141

ABSTRACT

Several recent studies have highlighted the potential of Actively Heated Fiber Optics (AHFO) for high resolution soil moisture mapping. In AHFO, the soil moisture can be calculated from the cumulative temperature ( T cum ), the maximum temperature ( T max ), or the soil thermal conductivity determined from the cooling phase after heating ( λ ). This study investigates the performance of the T cum , T max and λ methods for different heating strategies, i.e., differences in the duration and input power of the applied heat pulse. The aim is to compare the three approaches and to determine which is best suited to field applications where the power supply is limited. Results show that increasing the input power of the heat pulses makes it easier to differentiate between dry and wet soil conditions, which leads to an improved accuracy. Results suggest that if the power supply is limited, the heating strength is insufficient for the λ method to yield accurate estimates. Generally, the T cum and T max methods have similar accuracy. If the input power is limited, increasing the heat pulse duration can improve the accuracy of the AHFO method for both of these techniques. In particular, extending the heating duration can significantly increase the sensitivity of T cum to soil moisture. Hence, the T cum method is recommended when the input power is limited. Finally, results also show that up to 50% of the cable temperature change during the heat pulse can be attributed to soil background temperature, i.e., soil temperature changed by the net solar radiation. A method is proposed to correct this background temperature change. Without correction, soil moisture information can be completely masked by the background temperature error.

8.
Sensors (Basel) ; 17(5)2017 May 11.
Article in English | MEDLINE | ID: mdl-28492477

ABSTRACT

Trees play a crucial role in the water, carbon and nitrogen cycle on local, regional and global scales. Understanding the exchange of momentum, heat, water, and CO 2 between trees and the atmosphere is important to assess the impact of drought, deforestation and climate change. Unfortunately, ground measurements of tree properties such as mass and canopy interception of precipitation are often expensive or difficult due to challenging environments. This paper aims to demonstrate the concept of using robust and affordable accelerometers to measure tree properties and responses. Tree sway is dependent on mass, canopy structure, drag coefficient, and wind forcing. By measuring tree acceleration, we can relate the tree motion to external forcing (e.g., wind, precipitation and related canopy interception) and tree physical properties (e.g., mass, elasticity). Using five months of acceleration data of 19 trees in the Brazilian Amazon, we show that the frequency spectrum of tree sway is related to mass, canopy interception of precipitation, and canopy-atmosphere turbulent exchange.


Subject(s)
Trees , Accelerometry , Brazil , Climate Change , Plant Leaves
9.
Environ Manage ; 60(1): 12-29, 2017 07.
Article in English | MEDLINE | ID: mdl-28444422

ABSTRACT

Hydrologic data has traditionally been collected with permanent installations of sophisticated and accurate but expensive monitoring equipment at limited numbers of sites. Consequently, observation frequency and costs are high, but spatial coverage of the data is limited. Citizen Hydrology can possibly overcome these challenges by leveraging easily scaled mobile technology and local residents to collect hydrologic data at many sites. However, understanding of how decreased observational frequency impacts the accuracy of key streamflow statistics such as minimum flow, maximum flow, and runoff is limited. To evaluate this impact, we randomly selected 50 active United States Geological Survey streamflow gauges in California. We used 7 years of historical 15-min flow data from 2008 to 2014 to develop minimum flow, maximum flow, and runoff values for each gauge. To mimic lower frequency Citizen Hydrology observations, we developed a bootstrap randomized subsampling with replacement procedure. We calculated the same statistics, and their respective distributions, from 50 subsample iterations with four different subsampling frequencies ranging from daily to monthly. Minimum flows were estimated within 10% for half of the subsample iterations at 39 (daily) and 23 (monthly) of the 50 sites. However, maximum flows were estimated within 10% at only 7 (daily) and 0 (monthly) sites. Runoff volumes were estimated within 10% for half of the iterations at 44 (daily) and 12 (monthly) sites. Watershed flashiness most strongly impacted accuracy of minimum flow, maximum flow, and runoff estimates from subsampled data. Depending on the questions being asked, lower frequency Citizen Hydrology observations can provide useful hydrologic information.


Subject(s)
Conservation of Natural Resources/methods , Data Collection/methods , Hydrology , Rivers , Water Movements , California , Conservation of Natural Resources/statistics & numerical data , Data Collection/statistics & numerical data , Geological Phenomena , Random Allocation
10.
Sci Rep ; 7: 43289, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28230079

ABSTRACT

Organic pollution of rivers by wastewater discharge from human activities negatively impacts people and ecosystems. Without treatment, pollution control relies on a combination of natural degradation and dilution by natural runoff to reduce downstream effects. We quantify here for the first time the global sanitation crisis through its impact on organic river pollution from the threats of (1) increasing wastewater discharge due to urbanization and intensification of livestock farming, and (2) reductions in river dilution capacity due to climate change and water extractions. Using in-stream Biochemical Oxygen Demand (BOD) as an overall indicator of organic river pollution, we calculate historical (2000) and future (2050) BOD concentrations in global river networks. Despite significant self-cleaning capacities of rivers, the number of people affected by organic pollution (BOD >5 mg/l) is projected to increase from 1.1 billion in 2000 to 2.5 billion in 2050. With developing countries disproportionately affected, our results point to a growing need for affordable wastewater solutions.


Subject(s)
Animal Husbandry , Climate Change , Organic Chemicals/analysis , Rivers/chemistry , Urbanization , Water Pollutants, Chemical/analysis , Animals , Biological Oxygen Demand Analysis , Humans
11.
PLoS One ; 12(2): e0171844, 2017.
Article in English | MEDLINE | ID: mdl-28178329

ABSTRACT

Population growth, increasing energy demand and the depletion of fossil fuel reserves necessitate a search for sustainable alternatives for electricity generation. Hydropower could replace a large part of the contribution of gas and oil to the present energy mix. However, previous high-resolution estimates of hydropower potential have been local, and have yet to be applied on a global scale. This study is the first to formally present a detailed evaluation of the hydropower potential of each location, based on slope and discharge of each river in the world. The gross theoretical hydropower potential is approximately 52 PWh/year divided over 11.8 million locations. This 52 PWh/year is equal to 33% of the annually required energy, while the present energy production by hydropower plants is just 3% of the annually required energy. The results of this study: all potentially interesting locations for hydroelectric power plants, are available online.


Subject(s)
Models, Theoretical , Power Plants , Renewable Energy , Conservation of Natural Resources , Databases, Factual , Geography , Humans
12.
J Hydrometeorol ; 18(10): 2817-2825, 2017 Oct.
Article in English | MEDLINE | ID: mdl-32661459

ABSTRACT

Our understanding of hydroclimatic processes in Africa has been hindered by the lack of in-situ precipitation measurements. Satellite-based observations, in particular, the TRMM Multi-Satellite Precipitation Analysis (TMPA) have been pivotal to filling this void. The recently-released Integrated Multi-satellitE Retrievals for GPM (IMERG) project aims to continue the legacy of its predecessor, TMPA, and provide higher resolution data. Here, we validate IMERG-V04A precipitation data using in-situ observations from the Trans-African Hydro-Meteorological Observatory (TAHMO) project. Various evaluation measures are examined over a select number of stations in West and East Africa. In addition, continent-wide comparisons are made between IMERG and TMPA. The results show that the performance of the satellite-based products varies by season, region and the evaluation statistics. Precipitation diurnal cycle is relatively better captured by IMERG than TMPA. Both products exhibit a better agreement with gauge data in East Africa and humid West Africa than in the Southern Sahel. However, a clear advantage for IMERG is not apparent in detecting the annual cycle. Although all gridded products used here reasonably capture the annual cycle, some differences are evident during the short rains in East Africa. Direct comparison between IMERG and TMPA over the entire continent reveals that the similarity between the two products is also regionally heterogeneous. Except for Zimbabwe and Madagascar, where both satellite-based observations present a good agreement, the two products generally have their largest differences over mountainous regions. IMERG seems to have achieved a reduction in the positive bias evident in TMPA over Lake Victoria.

13.
J Contam Hydrol ; 173: 38-58, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25528244

ABSTRACT

In this study a numerical groundwater reactive transport model of a shallow groundwater aquifer contaminated with volatile organic compounds is developed. In addition to advective-dispersive transport, the model includes contaminant release from source areas, natural attenuation, abiotic degradation by a permeable reactive barrier at the site, and dilution by infiltrating rain. Aquifer heterogeneity is parameterized using pilot points for hydraulic conductivity, specific yield and groundwater recharge. A methodology is developed and applied to estimate the large number of parameters from the limited data at the field site (groundwater levels, groundwater concentrations of multiple chemical species, point-scale measurements of soil hydraulic conductivity, and lab-scale derived information on chemical and biochemical reactions). The proposed methodology relies on pilot point parameterization of hydraulic parameters and groundwater recharge, a regularization procedure to reconcile the large number of spatially distributed model parameters with the limited field data, a step-wise approach for integrating the different data sets into the model, and high performance computing. The methodology was proven to be effective in reproducing multiple contaminant plumes and in reducing the prior parameter uncertainty of hydraulic conductivity and groundwater recharge. Our results further indicate that contaminant transport predictions are strongly affected by the choice of the groundwater recharge model and flow parameters should be identified using both head and concentration measurements.


Subject(s)
Groundwater/chemistry , Models, Theoretical , Volatile Organic Compounds/chemistry , Water Movements , Belgium , Hydrology , Rain , Soil/chemistry , Water Pollutants, Chemical/chemistry
14.
J Environ Manage ; 144: 152-9, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-24945702

ABSTRACT

Growing competition over water resources has caused political disputes among stakeholders and has brought conflict resolution in the focus of negotiation processes. In these cases, bankruptcy rules for redistributing an asset when it is not sufficient to meet all claims could be applied. In this paper, we develop a new bankruptcy rule for water resources problems that considers agents' contribution to the total resources as well as their claims, which is in accordance with the UN Watercourses Convention (1997), as important factors for reallocation. Using the Euphrates River and a hypothetical case from the literature as examples, the new rule is compared with four alternative rules. The results show that the novel solution is potentially more powerful to help solving conflicts over river sharing problems.


Subject(s)
Bankruptcy , Conservation of Natural Resources , Negotiating/methods , Resource Allocation , Water Resources/analysis , Iraq , Resource Allocation/economics , Rivers , Syria , Turkey , Water Resources/economics
15.
Environ Sci Process Impacts ; 15(4): 783-93, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23400336

ABSTRACT

Measuring chlorophyll-a fluorescence is a commonly used method to determine microphytobenthic biomass expressed as chlorophyll-a per square centimetre. However, this in situ method is affected by reflection from the substratum which triggers an additional fluorescence signal within the microphytobenthic biofilm. Depending on the colour and texture of the natural substratum, this effect can lead to a considerable overestimation of microphytobenthic biomass. The results cannot be corrected for this effect by performing an auto-zero measurement, since the overestimation is not caused by an offset of the fluorometer. This article describes a substratum-specific correction procedure using a 700 nm signal to eliminate this effect by quantifying the fluorescence signal as a result of the reflection. An empirical relationship between the 700 nm signal and the additional fluorescence is used to calculate a correction factor for the reflective properties of the substratum. The factor is determined and applied during each biomass measurement, thereby making an additional calibration step for each individual type of substratum superfluous. This new method improves the reliability of the results significantly without increasing the time necessary to perform the measurements and without complicating the measurement procedure.


Subject(s)
Biofilms , Biomass , Environmental Monitoring/instrumentation , Microalgae/physiology , Calibration , Chlorophyll/analysis , Chlorophyll A , Equipment Design , Fluorescence , Microalgae/chemistry , Reproducibility of Results
16.
Sensors (Basel) ; 12(5): 5471-85, 2012.
Article in English | MEDLINE | ID: mdl-22778596

ABSTRACT

Over the past five years, Distributed Temperature Sensing (DTS) along fiber optic cables using Raman backscattering has become an important tool in the environmental sciences. Many environmental applications of DTS demand very accurate temperature measurements, with typical RMSE < 0.1 K. The aim of this paper is to describe and clarify the advantages and disadvantages of double-ended calibration to achieve such accuracy under field conditions. By measuring backscatter from both ends of the fiber optic cable, one can redress the effects of differential attenuation, as caused by bends, splices, and connectors. The methodological principles behind the double-ended calibration are presented, together with a set of practical considerations for field deployment. The results from a field experiment are presented, which show that with double-ended calibration good accuracies can be attained in the field.

17.
Sensors (Basel) ; 11(11): 10859-79, 2011.
Article in English | MEDLINE | ID: mdl-22346676

ABSTRACT

Hydrologic research is a very demanding application of fiber-optic distributed temperature sensing (DTS) in terms of precision, accuracy and calibration. The physics behind the most frequently used DTS instruments are considered as they apply to four calibration methods for single-ended DTS installations. The new methods presented are more accurate than the instrument-calibrated data, achieving accuracies on the order of tenths of a degree root mean square error (RMSE) and mean bias. Effects of localized non-uniformities that violate the assumptions of single-ended calibration data are explored and quantified. Experimental design considerations such as selection of integration times or selection of the length of the reference sections are discussed, and the impacts of these considerations on calibrated temperatures are explored in two case studies.


Subject(s)
Remote Sensing Technology/methods , Thermometers , Algorithms , Calibration , Ecosystem , Fiber Optic Technology/methods , Ponds , Spectrum Analysis, Raman/methods , Temperature , Trees
18.
Isotopes Environ Health Stud ; 46(1): 91-106, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20229387

ABSTRACT

Floodplain wetlands influence the timing and magnitude of stream responses to rainfall. In managing and sustaining the level of water resource usage in any river catchment as well as when modelling hydrological processes, it is essential that the role of floodplain wetlands in stream flows is recognised and understood. Existing studies on hydrology within the Volta River basin have not adequately represented the variability of wetland hydrological processes and their contribution to the sustenance of river flow. In order to quantify the extent of floodwater storage within riparian wetlands and their contribution to subsequent river discharges, a series of complementary studies were conducted by utilising stable isotopes, physical monitoring of groundwater levels and numerical modelling. The water samples were collected near Pwalugu on the White Volta River and at three wetland sites adjacent to the river using the grab sampling technique. These were analysed for (18)O and (2)H. The analysis provided an estimate of the contribution of pre-event water to overall stream flow. In addition, the variation in the isotopic composition in the river and wetland water samples, respectively, revealed the pattern of flow and exchange of water between the wetlands and the main river system.


Subject(s)
Floods , Fresh Water/analysis , Rivers/chemistry , Water Movements , Wetlands , Deuterium/analysis , Fresh Water/chemistry , Geography , Ghana , Oxygen Isotopes/analysis , Rain , Seasons , Time Factors
19.
Int J Biometeorol ; 49(2): 106-12, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15278686

ABSTRACT

The albedo (alpha) of vegetated land surfaces is a key regulatory factor in atmospheric circulation and plays an important role in mechanistic accounting of many ecological processes. This paper examines the influence of the phenological stages of maize (Zea mays) and cowpea (Vigna unguiculata) fields on observed albedo at a tropical site in Ghana. The crops were studied for the first and second planting dates in the year 2002. Crop management was similar for both seasons and measurements were taken from 10 mx10-m plots within crop fields. Four phenological stages were distinguished: (1) emergence, (2) vegetative, (3) flowering, and (4) maturity. alpha measured from two reference surfaces, short grass and bare soil, were used to study the change over the growing seasons. Surface alpha was measured and simulated at sun angles of 15, 30, 45, 60, and 75 degrees . Leaf area index (LAI) and crop height (CH) were also monitored. Generally, alpha increases from emergence to maturity for both planting dates in the maize field but slightly decreases after flowering in the cowpea field. For maize, the correlation coefficient ( R) between alpha and LAI equals 0.970, and the R between alpha and CH equals 0.969. Similarly, for cowpea these Rs are 0.988 and 0.943, respectively. A modified albedo model adequately predicted the observed alphas with an overall R>0.860. The relative difference in surface alpha with respect to the alpha values measured from the two reference surfaces is discussed. Data presented are expected to be a valuable input in agricultural water management, crop production models, eco-hydrological models and in the study of climate effects of agricultural production, and for the parameterization of land-surface schemes in regional weather and climate models.


Subject(s)
Fabaceae/growth & development , Light , Models, Theoretical , Zea mays/growth & development , Agriculture , Atmosphere , Ecology , Environmental Monitoring , Ghana , Plant Leaves/growth & development , Seasons , Tropical Climate
20.
Trop Med Int Health ; 8(5): 439-48, 2003 May.
Article in English | MEDLINE | ID: mdl-12753640

ABSTRACT

In 13 villages in the savannah zone and 21 villages in the forest zone of Côte d'Ivoire, the biting density of the principal malaria vector, Anopheles gambiae, was studied as a function of rice cultivation in the inland valleys in a 2-km radius around each village. In the savannah villages, during the main season cropping period, surface water on rice-cultivated and to a lesser extent on uncultivated inland valleys seems to contribute strongly to the A. gambiae population density. For the off-season cropping period (which starts after the first light rains in the savannah zone), correlations were weaker. Breeding sites other than in inland valleys may play an important role in the savannah zone. In the forest zone, however, the A. gambiae population density was strongly correlated with the surface water availability (SWA) in the rice-cultivated inland valleys, whereas the correlation with the SWA in other (uncultivated) inland valleys was weak. The requirement of sunlit breeding sites for A. gambiae might explain this difference between zones. In the forest zone, only inland valleys cleared for rice cultivation meet this requirement, whereas all other inland valleys are covered with dense vegetation. In the savannah zone, however, most undergrowth is burnt during the dry season, which permits sunlight to reach puddles resulting from the first rains.


Subject(s)
Anopheles/growth & development , Crops, Agricultural , Insect Vectors/growth & development , Oryza , Animals , Cote d'Ivoire , Humans , Poisson Distribution , Seasons , Water , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...