Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 15(4): 2517-25, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25723908

ABSTRACT

Stable and high-performance nanoporous "black silicon" photoelectrodes with electrolessly deposited Pt nanoparticle (NP) catalysts are made with two metal-assisted etching steps. Doubly etched samples exhibit an ∼300 mV positive shift in photocurrent onset for photoelectrochemical proton reduction compared to oxide-free planar Si with identical catalysts. We find that the photocurrent onset voltage of black Si photocathodes prepared from single-crystal planar Si wafers by an Ag-assisted etching process increases in oxidative environments (e.g., aqueous electrolyte) owing to a positive flat-band potential shift caused by surface oxidation. However, within 24 h, the surface oxide layer becomes a kinetic barrier to interfacial charge transfer that inhibits proton reduction. To mitigate this issue, we developed a novel second Pt-assisted etch process that buries the Pt NPs deep into the nanoporous Si surface. This second etch shifts the onset voltage positively, from +0.25 V to +0.4 V versus reversible hydrogen electrode, and reduces the charge-transfer resistance with no performance decrease seen for at least two months. PEC performance was stable owing to Pt NP catalysts that were buried deeply in the photoelectrode by the second etch, below a thick surface layer comprised primarily of amorphous SiO2 along with some degree of remaining crystalline Si as observed by scanning and transmission electron micrographs. Electrochemical impedance studies reveal that the second etch leads to a considerably smaller interfacial charge-transfer resistance than samples without the additional etch, suggesting that burying the Pt NPs improves the interfacial contact to the crystalline silicon surface.

2.
Biotechnol Bioeng ; 87(7): 924-9, 2004 Sep 30.
Article in English | MEDLINE | ID: mdl-15334419

ABSTRACT

Truly continuous solid-state fermentations with operating times of 2-3 weeks were conducted in a prototype bioreactor for the production of fungal (Penicillium glabrum) tannase from a tannin-containing model substrate. Substantial quantities of the enzyme were synthesized throughout the operating periods and (imperfect) steady-state conditions seemed to be achieved soon after start-up of the fermentations. This demonstrated for the first time the possibility of conducting solid-state fermentations in the continuous mode and with a constant noninoculated feed. The operating variables and fermentation conditions in the bioreactor were sufficiently well predicted for the basic reinoculation concept to succeed. However, an incomplete understanding of the microbial mechanisms, the experimental system, and their interaction indicated the need for more research in this novel area of solid-state fermentation.


Subject(s)
Bioreactors/microbiology , Carboxylic Ester Hydrolases/biosynthesis , Carboxylic Ester Hydrolases/isolation & purification , Cell Culture Techniques/methods , Penicillium/enzymology , Penicillium/growth & development , Tannins/metabolism , Cell Culture Techniques/instrumentation , Cell Proliferation , Fermentation , Pilot Projects
3.
Langmuir ; 20(10): 4246-53, 2004 May 11.
Article in English | MEDLINE | ID: mdl-15969424

ABSTRACT

Core-shell type nanoparticles with SnO2 and TiO2 cores and zinc oxide shells were prepared and characterized by surface sensitive techniques. The influence of the structure of the ZnO shell and the morphology ofnanoparticle films on the performance was evaluated. X-ray absorption near-edge structure and extended X-ray absorption fine structure studies show the presence of thin ZnO-like shells around the nanoparticles at low Zn levels. In the case of SnO2 cores, ZnO nanocrystals are formed at high Zn/Sn ratios (ca. 0.5). Scanning electron microscopy studies show that Zn modification of SnO2 nanoparticles changes the film morphology from a compact mesoporous structure to a less dense macroporous structure. In contrast, Zn modification of TiO2 nanoparticles has no apparent influence on film morphology. For SnO2 cores, adding ZnO improves the solar cell efficiency by increasing light scattering and dye uptake and decreasing recombination. In contrast, adding a ZnO shell to the TiO2 core decreases the cell efficiency, largely owing to a loss of photocurrent resulting from slow electron transport associated with the buildup of the ZnO surface layer.

4.
Science ; 284(5411): 141-3, 1999 Apr 02.
Article in English | MEDLINE | ID: mdl-10102813

ABSTRACT

A photo-assisted electrochemical etching technique to fabricate macropores in single-crystalline gallium phosphide (GaP) with variable porosity has been developed. Scanning electron microscopy and x-ray diffraction experiments confirm that the material consists of three-dimensional, interconnected random networks with pore sizes of about 150 nanometers. Optical transmission measurements demonstrate that the nonabsorbing disordered structures strongly scatter light. The photonic strength is controlled by filling the pores with liquids of different refractive indices. Macroporous gallium phosphide filled with air has the highest scattering efficiency for visible light.

SELECTION OF CITATIONS
SEARCH DETAIL
...