Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Radiother Oncol ; 167: 285-291, 2022 02.
Article in English | MEDLINE | ID: mdl-35033603

ABSTRACT

PURPOSE: Image-guided stereotactic body radiation therapy (SBRT) is an important local treatment for liver metastases. MRI-guidance enables direct tumor visualization, eliminating fiducial marker implantation. The purpose of this study was to test technical feasibility of our 4D-MRI guided liver SBRT workflow. Additionally, intra-fraction target motion and consequent target-coverage were studied. MATERIALS & METHODS: Patients with liver metastases were included in this sub-study of the prospective UMBRELLA-II clinical trial. Patients received mid-position (midP) SBRT. The daily adapt-to-position workflow included localization, verification and intra-fraction tumor midP monitoring using 4D-MRI. Technical feasibility was established based on persistence of the treatment protocol, treatment time ≤1 h, no geographical miss and no unexpected acute toxicity grade >3. All 4D-MRIs were registered to the planning midP-CT and tumor midP and amplitude were calculated. Additionally, delivered target dose was accumulated incorporating the 4D-MRI intra-fraction tumor motion and evaluated with Monte-Carlo error simulations. RESULTS: 20 patients with liver metastases were included and treated with 4D-MRI guided SBRT. Feasibility criteria were met in all-but-one patient. No grade ≥3 acute toxicity was observed. Group mean (M), systematic and random midP-drifts were 2.4 mm, 2.6 mm and 3.1 mm in CC-direction. 4D-MRI tumor CC-amplitudes were reduced compared to the simulation 4D-CT (M = -1.9 mm) and decreased during treatment (M = -1.4 mm). Dose accumulation showed adequate target-coverage on a population level. CONCLUSION: We successfully demonstrated technical feasibility of 4D-MRI guided SBRT in a cohort of 20 patients with liver metastases. However, substantial midposition drifts occurred which stress the need for intra-fraction motion management strategies to further increase the precision of treatment delivery.


Subject(s)
Liver Neoplasms , Radiosurgery , Feasibility Studies , Four-Dimensional Computed Tomography , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/radiotherapy , Magnetic Resonance Imaging , Prospective Studies , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods
2.
Radiother Oncol ; 138: 132-140, 2019 09.
Article in English | MEDLINE | ID: mdl-31252295

ABSTRACT

BACKGROUND & PURPOSE: To propose a novel mid-position (midP) workflow for MRI-guided liver SBRT and provide a validation of the required midP-MRI generation and registration steps. MATERIALS & METHODS: The first step of the midP workflow is the generation of a simulation midP-MRI from a 4D-MRI scan using deformable image registration. Next, a planning midP-CT is warped to the midP-MRI to enable planning in the midP-MRI anatomy. For daily MRI-guidance, three different registration methods to the simulation midP-MRI are proposed; (1) 4D rigid registration of all phases of the daily 4D-MRI, (2) 3D rigid registration of the daily midP-MRI, and (3) 3D deformable registration of the daily midP-MRI. The midP-MRI image quality was assessed with respect to 4D-MRI acquisition time, which is related to over-sampling of the data acquisition (i.e. number of dynamics). The deformable registration precision for the midP-MRI generation was validated using the distance discordance metric (DDM). The deformable CT-MRI and daily MRI-MRI registration accuracies were quantified using the 'full circle method'. RESULTS: The DDM was 1.5 mm (median) within the liver, independent of the number of dynamics. The root-mean-squared difference between midP-MRIs based on 10 and 60 dynamics was only 5.2%. The full circle CT-MRI deformable registration error had a median 3D vector length of 1.8 mm in the liver. The daily MRI-MRI registration error was submillimeter for all three evaluated methods. CONCLUSION: The feasibility of an MRI-guided mid-position workflow for liver SBRT is supported by the demonstrated high precision of all image processing and registration steps.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/radiotherapy , Magnetic Resonance Imaging, Interventional/methods , Radiosurgery/methods , Algorithms , Humans , Liver/diagnostic imaging , Liver Neoplasms/secondary , Reproducibility of Results
3.
Phys Med Biol ; 63(22): 22TR03, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30457121

ABSTRACT

High precision conformal radiotherapy requires sophisticated imaging techniques to aid in target localisation for planning and treatment, particularly when organ motion due to respiration is involved. X-ray based imaging is a well-established standard for radiotherapy treatments. Over the last few years, the ability of magnetic resonance imaging (MRI) to provide radiation-free images with high-resolution and superb soft tissue contrast has highlighted the potential of this imaging modality for radiotherapy treatment planning and motion management. In addition, these advantageous properties motivated several recent developments towards combined MRI radiation therapy treatment units, enabling in-room MRI-guidance and treatment adaptation. The aim of this review is to provide an overview of the state-of-the-art in MRI-based image guidance for organ motion management in external beam radiotherapy. Methodological aspects of MRI for organ motion management are reviewed and their application in treatment planning, in-room guidance and adaptive radiotherapy described. Finally, a roadmap for an optimal use of MRI-guidance is highlighted and future challenges are discussed.


Subject(s)
Magnetic Resonance Imaging , Movement , Radiotherapy, Image-Guided/methods , Humans , Neoplasms/diagnostic imaging , Neoplasms/physiopathology , Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...