Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med ; 22(1): 170, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649867

ABSTRACT

BACKGROUND: The stalling global progress in malaria control highlights the need for novel tools for malaria elimination, including transmission-blocking vaccines. Transmission-blocking vaccines aim to induce human antibodies that block parasite development in the mosquito and mosquitoes becoming infectious. The Pfs48/45 protein is a leading Plasmodium falciparum transmission-blocking vaccine candidate. The R0.6C fusion protein, consisting of Pfs48/45 domain 3 (6C) and the N-terminal region of P. falciparum glutamate-rich protein (R0), has previously been produced in Lactococcus lactis and elicited functional antibodies in rodents. Here, we assess the safety and transmission-reducing efficacy of R0.6C adsorbed to aluminium hydroxide with and without Matrix-M™ adjuvant in humans. METHODS: In this first-in-human, open-label clinical trial, malaria-naïve adults, aged 18-55 years, were recruited at the Radboudumc in Nijmegen, the Netherlands. Participants received four intramuscular vaccinations on days 0, 28, 56 and 168 with either 30 µg or 100 µg of R0.6C and were randomised for the allocation of one of the two different adjuvant combinations: aluminium hydroxide alone, or aluminium hydroxide combined with Matrix-M1™ adjuvant. Adverse events were recorded from inclusion until 84 days after the fourth vaccination. Anti-R0.6C and anti-6C IgG titres were measured by enzyme-linked immunosorbent assay. Transmission-reducing activity of participants' serum and purified vaccine-specific immunoglobulin G was assessed by standard membrane feeding assays using laboratory-reared Anopheles stephensi mosquitoes and cultured P. falciparum gametocytes. RESULTS: Thirty-one participants completed four vaccinations and were included in the analysis. Administration of all doses was safe and well-tolerated, with one related grade 3 adverse event (transient fever) and no serious adverse events occurring. Anti-R0.6C and anti-6C IgG titres were similar between the 30 and 100 µg R0.6C arms, but higher in Matrix-M1™ arms. Neat participant sera did not induce significant transmission-reducing activity in mosquito feeding experiments, but concentrated vaccine-specific IgGs purified from sera collected two weeks after the fourth vaccination achieved up to 99% transmission-reducing activity. CONCLUSIONS: R0.6C/aluminium hydroxide with or without Matrix-M1™ is safe, immunogenic and induces functional Pfs48/45-specific transmission-blocking antibodies, albeit at insufficient serum concentrations to result in transmission reduction by neat serum. Future work should focus on identifying alternative vaccine formulations or regimens that enhance functional antibody responses. TRIAL REGISTRATION: The trial is registered with ClinicalTrials.gov under identifier NCT04862416.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Membrane Glycoproteins , Plasmodium falciparum , Protozoan Proteins , Adolescent , Adult , Animals , Female , Humans , Male , Middle Aged , Young Adult , Adjuvants, Immunologic/administration & dosage , Aluminum Hydroxide/administration & dosage , Antibodies, Protozoan , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Malaria, Falciparum/prevention & control , Malaria, Falciparum/transmission , Malaria, Falciparum/immunology , Netherlands , Plasmodium falciparum/immunology , Protozoan Proteins/immunology
2.
J Antimicrob Chemother ; 70(5): 1357-66, 2015 May.
Article in English | MEDLINE | ID: mdl-25667405

ABSTRACT

OBJECTIVES: The development of drugs to reduce malaria transmission is an important part of malaria eradication plans. We set out to develop and validate a combination of new screening assays for prioritization of transmission-blocking molecules. METHODS: We developed high-throughput assays for screening compounds against gametocytes, the parasite stages responsible for onward transmission to mosquitoes. An existing gametocyte parasitic lactate dehydrogenase (pLDH) assay was adapted for use in 384-well plates, and a novel homogeneous immunoassay to monitor the functional transition of female gametocytes into gametes was developed. A collection of 48 marketed and experimental antimalarials was screened and subsequently tested for impact on sporogony in Anopheles mosquitoes, to directly quantify the transmission-blocking properties of antimalarials in relation to their effects on gametocyte pLDH activity or gametogenesis. RESULTS AND CONCLUSIONS: The novel screening assays revealed distinct stage-specific kinetics and dynamics of drug effects. Peroxides showed the most potent transmission-blocking effects, with an intermediate speed of action and IC50 values that were 20-40-fold higher than the IC50s against the asexual stages causing clinical malaria. Finally, the novel synthetic peroxide OZ439 appeared to be a promising drug candidate as it exerted gametocytocidal and transmission-blocking effects at clinically relevant concentrations.


Subject(s)
Antimalarials/isolation & purification , Drug Evaluation, Preclinical/methods , Plasmodium/drug effects , Animals , Anopheles/parasitology , Cell Survival/drug effects , Female , High-Throughput Screening Assays/methods , Inhibitory Concentration 50 , L-Lactate Dehydrogenase/analysis , Plasmodium/enzymology
3.
Parasitology ; 130(Pt 1): 13-22, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15700753

ABSTRACT

Host responses to the transmittable stages of the malaria parasite may reduce transmission effectively. Transmission-reducing activity (TRA) of human serum can be determined as a percentage, using the Standard Membrane Feeding Assay (SMFA). This laboratory assay was evaluated using the results of 121 experiments with malaria-endemic sera among which many repeated measurements were obtained. The assay consists of the feeding of Anopheles stephensi mosquitoes with cultured Plasmodium falciparum gametocytes, mixed with human red blood cells, and control and experimental sera. The TRA of individual sera was determined by the comparison of oocyst densities between these sera. Bootstrap data on oocyst densities in individual mosquitoes in control feeds were used to construct confidence limits for TRA percentages of serum feeds. Low (<20%) and high TRA (>90%) values for individual sera were usually reproduced in a second experiment, whereas this was more difficult for values between 20% and 90%. The observed variability of TRA values is explained in part by the variability in oocyst density per mosquito. Oocyst densities in control feeds varied more between experiments than within experiments and showed a slight decline over the 3 years of experiments. Reproducibility of TRA of field sera was low (20%) between experiments, but much higher (61 %) within experiments. A minimum of 35 oocysts per mosquito in control feeds gave optimal reproducibility (44%) between experiments. We recommend that (1) sera are compared within an experiment, or (2) assays are only analysed where controls have at least 35 oocysts per mosquito. The SMFA is under the recommended conditions appropriate for the study of factors that may influence TRA, e.g. transmission blocking vaccines.


Subject(s)
Anopheles/parasitology , Feeding Behavior/physiology , Malaria, Falciparum/blood , Malaria, Falciparum/transmission , Membranes, Artificial , Animals , Anopheles/physiology , Computer Simulation , Humans , Insect Vectors , Malaria, Falciparum/prevention & control , Models, Biological , Oocysts , Plasmodium falciparum/growth & development , Reproducibility of Results , Retrospective Studies
4.
Med Vet Entomol ; 12(3): 302-12, 1998 Jul.
Article in English | MEDLINE | ID: mdl-9737603

ABSTRACT

We previously selected a line of the malaria vector mosquito Anopheles stephensi refractory (resistant) to the human malaria parasite Plasmodium falciparum, using in vitro infections with P. falciparum gametocytes. This report presents data on the genetic background of refractoriness. The results of F1-crosses and backcrosses show that refractoriness to P. falciparum in our A. stephensi line is autosomal and semi-dominant to susceptibility. The expression of refractoriness is apparently affected by a cytoplasmic factor. Interpretation of data from the crosses by quantitative trait locus analysis shows that one gene or two unlinked interacting autosomal genes, or groups of closely linked genes, are involved.


Subject(s)
Anopheles/genetics , Anopheles/parasitology , Plasmodium falciparum/physiology , Animals , Crosses, Genetic , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...