Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Lett Appl Microbiol ; 37(5): 424-8, 2003.
Article in English | MEDLINE | ID: mdl-14633116

ABSTRACT

AIMS: To identify a ruminal isolate which transforms oleic, linoleic and linolenic acids to stearic acid and to identify transient intermediates formed during biohydrogenation. METHODS AND RESULTS: The stearic acid-forming bacterium, isolated from the rumen of a grazing cow, was a Gram-negative motile rod which utilized a range of growth substrates including starch and pectin but not cellulose or xylan. From its 16S rRNA gene sequence, the isolate was identified as a strain of Butyrivibrio hungatei. During conversion of linoleic acid, 9,11-conjugated linoleic acid formed as a transient intermediate before trans-vaccenic acid accumulated together with stearic acid. Unlike previously studied ruminal biohydrogenating bacteria, B. hungatei Su6 was able to convert alpha-linolenic acid to stearic acid. Linolenic acid was converted to stearic via conjugated linolenic acid, linoleic acid and trans-vaccenic acid as intermediates. Oleic acid and cis-vaccenic acid were converted to a series of trans monounsaturated isomers as well as stearic acid. An investigation of these isomers indicated that mixed trans positional isomers are intermediate in the biohydrogenation of cis monounsaturated fatty acids to stearic acid. CONCLUSION: This, the first rigorous identification and characterization of a ruminal bacterium which forms stearic acid, shows that B. hungatei plays an important role in unsaturated fatty acid transformations in the rumen. SIGNIFICANCE AND IMPACT OF THE STUDY: Biohydrogenating bacteria which convert C18 unsaturated fatty acids to stearic acid have not been available for study for many years. Access to B. hungatei Su6 now provides a fresh opportunity for understanding biohydrogenation mechanisms and rumen processes which lead to saturated fat in ruminant products.


Subject(s)
Butyrivibrio/metabolism , Fatty Acids/metabolism , Rumen/microbiology , Stearic Acids/metabolism , Animals , Butyrivibrio/isolation & purification , Cattle , Hydrogenation , Isomerism , Linoleic Acids/metabolism , Linolenic Acids/metabolism , Oleic Acids/metabolism , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...