Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Int J Mol Sci ; 23(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36499754

ABSTRACT

Oncolytic adenoviruses are promising new anticancer agents. To realize their full anticancer potential, they are being engineered to express therapeutic payloads. Tumor suppressor p53 function contributes to oncolytic adenovirus activity. Many cancer cells carry an intact TP53 gene but express p53 inhibitors that compromise p53 function. Therefore, we hypothesized that oncolytic adenoviruses could be made more effective by suppressing p53 inhibitors in selected cancer cells. To investigate this concept, we attenuated the expression of the established p53 inhibitor synoviolin (SYVN1) in A549 lung cancer cells by RNA interference. Silencing SYVN1 inhibited p53 degradation, thereby increasing p53 activity, and promoted adenovirus-induced A549 cell death. Based on these observations, we constructed a new oncolytic adenovirus that expresses a short hairpin RNA against SYVN1. This virus killed A549 cells more effectively in vitro and inhibited A549 xenograft tumor growth in vivo. Surprisingly, increased susceptibility to adenovirus-mediated cell killing by SYVN1 silencing was also observed in A549 TP53 knockout cells. Hence, while the mechanism of SYVN1-mediated inhibition of adenovirus replication is not fully understood, our results clearly show that RNA interference technology can be exploited to design more potent oncolytic adenoviruses.


Subject(s)
Oncolytic Virotherapy , Oncolytic Viruses , Humans , Adenoviridae/physiology , Oncolytic Viruses/genetics , Oncolytic Viruses/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Oncolytic Virotherapy/methods , Virus Replication/genetics , Cell Line, Tumor , Xenograft Model Antitumor Assays , Ubiquitin-Protein Ligases/metabolism
2.
Sci Rep ; 12(1): 9606, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35688932

ABSTRACT

Promiscuous activity of the Streptococcus pyogenes DNA nuclease CRISPR-Cas9 can result in destruction of a successfully modified sequence obtained by templated repair of a Cas9-induced DNA double-strand break. To avoid re-cutting, additional target-site-disruptions (TSDs) are often introduced on top of the desired base-pair alteration in order to suppress target recognition. These TSDs may lower the efficiency of introducing the intended mutation and can cause unexpected phenotypes. Alternatively, successfully edited sites can be protected against Cas9 re-cutting activity. This method exploits the finding that Cas9 complexed to trimmed guideRNAs can still tightly bind specific genomic sequences but lacks nuclease activity. We show here that the presence of a guideRNA plus a trimmed guideRNA that matches the successfully mutated sequence, which we call hideRNA, can enhance the recovery of precise single base-pair substitution events tenfold. The benefit of hideRNAs in generating a single point mutation was demonstrated in cell lines using plasmid-based delivery of CRISPR-Cas9 components and in mouse zygotes injected with Cas9/guideRNA plus Cas9/hideRNA ribonucleoprotein complexes. However, hRNA protection sometimes failed, which likely reflects an unfavorable affinity of hRNA/Cas9 versus gRNA/Cas9 for the DNA target site. HideRNAs can easily be implemented into current gene editing protocols and facilitate the recovery of single base-pair substitution. As such, hideRNAs are of great value in gene editing experiments demanding high accuracy.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , DNA Breaks, Double-Stranded , Endonucleases/genetics , Gene Editing/methods , Mice , RNA, Guide, Kinetoplastida/genetics
3.
Ned Tijdschr Geneeskd ; 1652021 08 30.
Article in Dutch | MEDLINE | ID: mdl-34523847

ABSTRACT

In 2020, the Nobel Prize in Chemistry was awarded to American molecular biologist Jennifer Doudna and her French colleague Emmanuelle Charpentier for their fundamental research on CRISPR, an ingenious bacterial immune system. Studies into the working mechanism of CRISPR led to many Eureka moments. Through smart biotechnological engineering, CRISPR became suitable for applications in 'DNA surgery': the targeted editing of the genetic code. Here, we discuss emerging medical CRISPR applications for the treatment of human genetic disorders, including in vivo therapy. This Nobel Prize-winning discovery is powerful, adaptable and accurate, and clinical trials are being launched at an amazing pace. However, extensive research is needed on safe clinical use and possible side effects of CRISPR. In addition, the regulations on market authorization and reimbursement are not yet tailored to this very personal and potentially expensive therapy. Whereas challenges remain, CRISPR gene therapy will continue to rapidly mature as a clinical reality.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing , CRISPR-Cas Systems , DNA , Female , Genetic Therapy , Humans
4.
Sci Rep ; 9(1): 768, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30683899

ABSTRACT

Fanconi anemia (FA) is a cancer predisposition syndrome characterized by congenital abnormalities, bone marrow failure, and hypersensitivity to aldehydes and crosslinking agents. For FA patients, gene editing holds promise for therapeutic applications aimed at functionally restoring mutated genes in hematopoietic stem cells. However, intrinsic FA DNA repair defects may obstruct gene editing feasibility. Here, we report on the CRISPR/Cas9-mediated correction of a disruptive mutation in Fancf. Our experiments revealed that gene editing could effectively restore Fancf function via error-prone end joining resulting in a 27% increased survival in the presence of mitomycin C. In addition, templated gene correction could be achieved after double strand or single strand break formation. Although templated gene editing efficiencies were low (≤6%), FA corrected embryonic stem cells acquired a strong proliferative advantage over non-corrected cells, even without imposing genotoxic stress. Notably, Cas9 nickase activity resulted in mono-allelic gene editing and avoidance of undesired mutagenesis. In conclusion: DNA repair defects associated with FANCF deficiency do not prohibit CRISPR/Cas9 gene correction. Our data provide a solid basis for the application of pre-clinical models to further explore the potential of gene editing against FA, with the eventual aim to obtain therapeutic strategies against bone marrow failure.


Subject(s)
CRISPR-Cas Systems/genetics , Fanconi Anemia Complementation Group F Protein/genetics , Fanconi Anemia/genetics , Fanconi Anemia/therapy , Gene Editing/methods , Genetic Therapy/methods , Animals , Cells, Cultured , DNA Repair , Ear , Fibroblasts , Mice , Mouse Embryonic Stem Cells
5.
Glycobiology ; 29(2): 137-150, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30476078

ABSTRACT

Aberrant fucosylation in cancer cells is considered as a signature of malignant cell transformation and it is associated with tumor progression, metastasis and resistance to chemotherapy. Specifically, in colorectal cancer cells, increased levels of the fucosylated Lewisx antigen are attributed to the deregulated expression of pertinent fucosyltransferases, like fucosyltransferase 4 (FUT4) and fucosyltransferase 9 (FUT9). However, the lack of experimental models closely mimicking cancer-specific regulation of fucosyltransferase gene expression has, so far, limited our knowledge regarding the substrate specificity of these enzymes and the impact of Lewisx synthesis on the glycome of colorectal cancer cells. Therefore, we sought to transcriptionally activate the Fut4 and Fut9 genes in the well-known murine colorectal cancer cell line, MC38, which lacks expression of the FUT4 and FUT9 enzymes. For this purpose, we utilized a physiologically relevant, guide RNA-based model of de novo gene expression, namely the CRISPR-dCas9-VPR system. Induction of the Fut4 and Fut9 genes in MC38 cells using CRISPR-dCas9-VPR resulted in specific neo-expression of functional Lewisx antigen on the cell surface. Interestingly, Lewisx was mainly carried by N-linked glycans in both MC38-FUT4 and MC38-FUT9 cells, despite pronounced differences in the biosynthetic properties and the expression stability of the induced enzymes. Moreover, Lewisx expression was found to influence core-fucosylation, sialylation, antennarity and the subtypes of N-glycans in the MC38-glycovariants. In conclusion, exploiting the CRISPR-dCas9-VPR system to augment glycosyltransferase expression is a promising method of transcriptional gene activation with broad application possibilities in glycobiology and oncology research.


Subject(s)
CRISPR-Cas Systems/genetics , Colorectal Neoplasms/genetics , Fucosyltransferases/genetics , Polysaccharides/genetics , Transcriptional Activation , Animals , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Fucosyltransferases/metabolism , Mice , Polysaccharides/metabolism , Tumor Cells, Cultured
7.
Ned Tijdschr Geneeskd ; 1622018 Jun 29.
Article in Dutch | MEDLINE | ID: mdl-30040285

ABSTRACT

CRISPR/Cas gene editing makes it much easier to make targeted changes in the DNA of human cells than other forms of gene therapy. This revolutionary technology offers spectacular opportunities to study gene functions; the clinical consequences of gene variations in patients can be determined much faster. The efficacy and accuracy of CRISPR/Cas is so impressive that a breakthrough to therapeutic applications is approaching fast. CRISPR/Cas is already being used in immunotherapy against cancer, and trials for monogenetic blood disorders, such as beta-thalassemia, have been scheduled. However, broad clinical implementation of CRISPR/Cas is not feasible yet, due to off-target DNA changes that may occur as a by-product. Particularly in case of in-vivo applications there are therapeutic challenges. For gene editing in human embryos, technical shortcomings and open ethical issues need to be addressed. Gene-editing therapy for serious disorders with transplantable cell types, and therefore the option of verification of "CRISPRed" cells, is seen as a possible first application within the regular healthcare system.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Editing , Genetic Therapy/methods , Embryo, Mammalian , Gene Editing/ethics , Humans
8.
Nucleic Acids Res ; 46(15): 7662-7674, 2018 09 06.
Article in English | MEDLINE | ID: mdl-29939287

ABSTRACT

The transcriptional regulator EVI1 has an essential role in early hematopoiesis and development. However, aberrantly high expression of EVI1 has potent oncogenic properties and confers poor prognosis and chemo-resistance in leukemia and solid tumors. To investigate to what extent EVI1 function might be regulated by post-translational modifications we carried out mass spectrometry- and antibody-based analyses and uncovered an ATM-mediated double phosphorylation of EVI1 at the carboxy-terminal S858/S860 SQS motif. In the presence of genotoxic stress EVI1-WT (SQS), but not site mutated EVI1-AQA was able to maintain transcriptional patterns and transformation potency, while under standard conditions carboxy-terminal mutation had no effect. Maintenance of hematopoietic progenitor cell clonogenic potential was profoundly impaired with EVI1-AQA compared with EVI1-WT, in particular in the presence of genotoxic stress. Exploring mechanistic events underlying these observations, we showed that after genotoxic stress EVI1-WT, but not EVI1-AQA increased its level of association with its functionally essential interaction partner CtBP1, implying a role for ATM in regulating EVI1 protein interactions via phosphorylation. This aspect of EVI1 regulation is therapeutically relevant, as chemotherapy-induced genotoxicity might detrimentally sustain EVI1 function via stress response mediated phosphorylation, and ATM-inhibition might be of specific targeted benefit in EVI1-overexpressing malignancies.


Subject(s)
Alcohol Oxidoreductases/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Self Renewal/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Leukemic , MDS1 and EVI1 Complex Locus Protein/genetics , Acute Disease , Alcohol Oxidoreductases/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Gene Expression Profiling , HEK293 Cells , Humans , Leukemia, Myeloid/genetics , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/pathology , MDS1 and EVI1 Complex Locus Protein/chemistry , MDS1 and EVI1 Complex Locus Protein/metabolism , Mutation , Phosphorylation
9.
Sci Rep ; 6: 32129, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27555360

ABSTRACT

The familial forms of early onset pre-eclampsia and related syndromes (HELLP) present with hypertension and proteinuria in the mother and growth restriction of the fetus. Genetically, these clinically similar entities are caused by different founder-dependent, placentally-expressed paralogous genes. All susceptibility genes (STOX1, lincHELLP, INO80B) identified so far are master control genes that regulate an essential trophoblast differentiation pathway, but act at different entry points. Many genes remain to be identified. Here we demonstrate that a long non-coding RNA (lncRNA) within intron 3 of the STOX2 gene on 4q35.1 acts as a permissive cis-acting regulator of alternative splicing of STOX2. When this lncRNA is mutated or absent, an alternative exon (3B) of STOX2 is included. This introduces a stop codon resulting in the deletion of a highly conserved domain of 64 amino acids in the C-terminal of the STOX2 protein. A mutation present within a regulatory region within intron 1 of STOX2 has the same effect after blocking with CRISPR technology: transcripts with exon 3B are upregulated. This proces appears related to transcriptional control by a chromatin-splicing adaptor complex as described for FGFR2. For STOX2, CHD5, coding for a chromodomain helicase DNA binding protein, qualifies as the chromatin modifier in this process.


Subject(s)
Carrier Proteins/genetics , Chromosomes, Human, Pair 4 , Pre-Eclampsia/genetics , RNA, Untranslated/genetics , Alternative Splicing , CRISPR-Cas Systems , Female , Finland , Genetic Predisposition to Disease , Humans , Introns , Male , Mutation , Pedigree , Placenta/cytology , Placenta/physiology , Polymorphism, Single Nucleotide , Pregnancy , Trophoblasts/pathology
10.
Nat Commun ; 6: 8829, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26681308

ABSTRACT

Fanconi anaemia (FA) is a hereditary disease featuring hypersensitivity to DNA cross-linker-induced chromosomal instability in association with developmental abnormalities, bone marrow failure and a strong predisposition to cancer. A total of 17 FA disease genes have been reported, all of which act in a recessive mode of inheritance. Here we report on a de novo g.41022153G>A; p.Ala293Thr (NM_002875) missense mutation in one allele of the homologous recombination DNA repair gene RAD51 in an FA-like patient. This heterozygous mutation causes a novel FA subtype, 'FA-R', which appears to be the first subtype of FA caused by a dominant-negative mutation. The patient, who features microcephaly and mental retardation, has reached adulthood without the typical bone marrow failure and paediatric cancers. Together with the recent reports on RAD51-associated congenital mirror movement disorders, our results point to an important role for RAD51-mediated homologous recombination in neurodevelopment, in addition to DNA repair and cancer susceptibility.


Subject(s)
DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Fanconi Anemia/enzymology , Mutation, Missense , Acid Anhydride Hydrolases , Base Sequence , DNA Damage , DNA Repair , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/metabolism , Fanconi Anemia/genetics , Humans , Male , Molecular Sequence Data , Recombination, Genetic , Young Adult
12.
J Pathol ; 226(1): 28-39, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21915857

ABSTRACT

Fanconi anaemia (FA) is a rare recessive disorder marked by developmental abnormalities, bone marrow failure, and a high risk for the development of leukaemia and solid tumours. The inactivation of FA genes, in particular FANCF, has also been documented in sporadic tumours in non-FA patients. To study whether there is a causal relationship between FA pathway defects and tumour development, we have generated a mouse model with a targeted disruption of the FA core complex gene Fancf. Fancf-deficient mouse embryonic fibroblasts displayed a phenotype typical for FA cells: they showed an aberrant response to DNA cross-linking agents as manifested by G(2) arrest, chromosomal aberrations, reduced survival, and an inability to monoubiquitinate FANCD2. Fancf homozygous mice were viable, born following a normal Mendelian distribution, and showed no growth retardation or developmental abnormalities. The gonads of Fancf mutant mice functioned abnormally, showing compromised follicle development and spermatogenesis as has been observed in other FA mouse models and in FA patients. In a cohort of Fancf-deficient mice, we observed decreased overall survival and increased tumour incidence. Notably, in seven female mice, six ovarian tumours developed: five granulosa cell tumours and one luteoma. One mouse had developed tumours in both ovaries. High-resolution array comparative genomic hybridization (aCGH) on these tumours suggests that the increased incidence of ovarian tumours correlates with the infertility in Fancf-deficient mice and the genomic instability characteristic of FA pathway deficiency.


Subject(s)
Fanconi Anemia Complementation Group F Protein/genetics , Granulosa Cell Tumor/genetics , Luteoma/genetics , Ovarian Neoplasms/genetics , Animals , Comparative Genomic Hybridization , Disease Models, Animal , Fanconi Anemia Complementation Group F Protein/deficiency , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout
13.
DNA Repair (Amst) ; 10(12): 1252-61, 2011 Dec 10.
Article in English | MEDLINE | ID: mdl-22036606

ABSTRACT

Fanconi anemia (FA) is a heritable disease characterized by bone marrow failure, congenital abnormalities, and cancer predisposition. The 15 identified FA genes operate in a molecular pathway to preserve genomic integrity. Within this pathway the FA core complex operates as an ubiquitin ligase that activates the complex of FANCD2 and FANCI to coordinate DNA repair. The FA core complex is formed by at least 12 proteins. However, only the FANCL subunit displays ubiquitin ligase activity. FANCA and FANCG are members of the FA core complex for which no other functions have been described than to participate in protein interactions. In this study we generated mice with combined null alleles for Fanca and Fancg to identify extended functions for these genes by characterizing the double mutant mice and cells. Double mutant a(-/-)/g(-/-) mice were born at near Mendelian frequencies without apparent developmental abnormalities. Histological analysis of a(-/-)/g(-/-) mice revealed a Leydig cell hyperplasia and frequent vacuolization of Sertoli cells in testes, while ovaries were depleted from developing follicles and displayed an interstitial cell hyperplasia. These gonadal aberrations were associated with a compromised fertility of a(-/-)/g(-/-) males and females. During the first year of life a(-/-)/g(-/-) did not develop malignancies or bone marrow failure. At the cellular level a(-/-)/g(-/-), Fanca(-/-), and Fancg(-/-) cells proved equally compromised in DNA crosslink and homology-directed repair. Overall the phenotype of a(-/-)/g(-/-) double knockout mice and cells appeared highly similar to the phenotype of Fanca or Fancg single knockouts. The lack of an augmented phenotype suggest that null mutations in Fanca or Fancg are fully epistatic, making additional important functions outside of the FA core complex highly unlikely.


Subject(s)
Epistasis, Genetic/genetics , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group G Protein/genetics , Fanconi Anemia/genetics , Mutation/genetics , Active Transport, Cell Nucleus/drug effects , Animals , Bone Marrow Cells/cytology , Cell Line , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Chromosome Breakage/drug effects , Embryo, Mammalian , Female , Fertility/genetics , Fibroblasts/cytology , Fluorobenzenes/pharmacology , Hematologic Tests , Humans , Male , Mice , Ovary/metabolism , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors , Stem Cells/drug effects , Stem Cells/metabolism , Testis/metabolism
14.
Cancer Res ; 69(24): 9431-8, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19934329

ABSTRACT

DNA repair defects are frequently encountered in human cancers. These defects are utilized by traditional therapeutics but also offer novel cancer treatment strategies based on synthetic lethality. To determine the consequences of combined Fanconi anemia (FA) and mismatch repair pathway inactivation, defects in Fancd2 and Mlh1 were combined in one mouse model. Fancd2/Mlh1 double-mutant embryos displayed growth retardation resulting in embryonic lethality and significant underrepresentation among progeny. Additional inactivation of Trp53 failed to improve the survival of Fancd2/Mlh1-deficient embryos. Mouse fibroblasts were obtained and challenged with cross-linking agents. Fancd2-deficient cells displayed the FA-characteristic growth inhibition after mitomycin C (MMC) exposure. In primary fibroblasts, the absence of Mlh1 did not greatly affect the MMC sensitivity of Fancd2-deficient and Fancd2-proficient cells. However, in Trp53 mutant immortalized fibroblasts, Mlh1 deficiency reduced the growth-inhibiting effect of MMC in Fancd2 mutant and complemented cells. Similar data were obtained using psoralen/UVA, signifying that MLH1 influences the cellular sensitivity to DNA interstrand cross-links. Next, the effect of MLH1 deficiency on the formation of chromosomal aberrations in response to cross-linking agents was determined. Surprisingly, Mlh1 mutant fibroblasts displayed a modest but noticeable decrease in induced chromosomal breakage and interchange frequencies, suggesting that MLH1 promotes interstrand cross-link repair catastrophe. In conclusion, the combined inactivation of Fancd2 and Mlh1 did not result in synthetic lethality at the cellular level. Although the absence of Fancd2 sensitized Mlh1/Trp53 mutant fibroblasts to MMC, the differential survival of primary and immortalized fibroblasts advocates against systemic inactivation of FANCD2 to enhance treatment of MLH1-deficient tumors.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Fanconi Anemia Complementation Group D2 Protein/genetics , Nuclear Proteins/genetics , Animals , Chromosome Aberrations , DNA Mismatch Repair , Embryo, Mammalian/pathology , Fanconi Anemia/genetics , Female , Fetal Growth Retardation/genetics , Fetal Growth Retardation/pathology , Gene Silencing , Inbreeding , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitomycin/pharmacology , MutL Protein Homolog 1 , Pregnancy
15.
Hum Mol Genet ; 18(18): 3484-95, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19561169

ABSTRACT

The Fanconi anemia (FA) core complex member FANCM remodels synthetic replication forks and recombination intermediates. Thus far, only one FA patient with FANCM mutations has been described, but the relevance of these mutations for the FA phenotype is uncertain. To provide further experimental access to the FA-M complementation group we have generated Fancm-deficient mice by deleting exon 2. FANCM deficiency caused hypogonadism in mice and hypersensitivity to cross-linking agents in mouse embryonic fibroblasts (MEFs), thus phenocopying other FA mouse models. However, Fancm(Delta2/Delta2) mice also showed unique features atypical for FA mice, including underrepresentation of female Fancm(Delta2/Delta2) mice and decreased overall and tumor-free survival. This increased cancer incidence may be correlated to the role of FANCM in the suppression of spontaneous sister chromatid exchanges as observed in MEFs. In addition, FANCM appeared to have a stimulatory rather than essential role in FANCD2 monoubiquitination. The FA-M mouse model presented here suggests that FANCM functions both inside and outside the FA core complex to maintain genome stability and to prevent tumorigenesis.


Subject(s)
Fanconi Anemia Complementation Group Proteins/deficiency , Fanconi Anemia Complementation Group Proteins/metabolism , Alleles , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cells, Cultured , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia/pathology , Fanconi Anemia Complementation Group Proteins/genetics , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Ovary/abnormalities , Ovary/metabolism , Phenotype , Sister Chromatid Exchange , Survival Rate , Testis/abnormalities , Testis/metabolism
16.
Blood ; 108(13): 4283-7, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-16946306

ABSTRACT

Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by bone marrow (BM) failure and cancer susceptibility. Identification of the cDNAs of FA complementation types allows the potential of using gene transfer technology to introduce functional cDNAs as transgenes into autologous stem cells and provide a cure for the BM failure in FA patients. However, strategies to enhance the mobilization, transduction, and engraftment of exogenous stem cells are required to optimize efficacy prior to widespread clinical use. Hypersensitivity of Fancc-/- cells to interferon-gamma (IFN-gamma), a nongenotoxic immune-regulatory cytokine, enhances engraftment of syngeneic wild-type (WT) cells in Fancc-/- mice. However, whether this phenotype is of broad relevance in other FA complementation groups is unresolved. Here we show that primitive and mature myeloid progenitors in Fanca-/- and Fancg-/- mice are hypersensitive to IFN-gamma and that in vivo infusion of IFN-gamma at clinically relevant concentrations was sufficient to allow consistent long-term engraftment of isogenic WT repopulating stem cells. Given that FANCA, FANCC, and FANCG complementation groups account for more than 90% of all FA patients, these data provide evidence that IFN-gamma conditioning may be a useful nongenotoxic strategy for myelopreparation in FA patients.


Subject(s)
Antiviral Agents/pharmacology , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group G Protein/genetics , Fanconi Anemia/therapy , Genetic Therapy , Interferon-gamma/pharmacology , Myeloid Progenitor Cells/transplantation , Animals , Fanconi Anemia/genetics , Genetic Therapy/methods , Graft Enhancement, Immunologic/methods , Graft Survival/drug effects , Graft Survival/genetics , Hematopoietic Stem Cell Mobilization/methods , Humans , Mice , Mice, Knockout , Transduction, Genetic/methods , Transplantation, Autologous , Transplantation, Isogeneic
17.
Blood ; 104(13): 3927-35, 2004 Dec 15.
Article in English | MEDLINE | ID: mdl-15319283

ABSTRACT

A number of DNA repair proteins also play roles in telomere metabolism. To investigate whether the accelerated telomere shortening reported in Fanconi anemia (FA) hematopoietic cells relates to a direct role of the FA pathway in telomere maintenance, we have analyzed telomere dynamics in Fancg-deficient mouse and human cells. We show here that both hematopoietic (stem and differentiated bone marrow cells, B and T lymphocytes) and nonhematopoietic (germ cells, mouse embryonic fibroblasts [MEFs]) Fancg(-/-) mouse cells display normal telomere length, normal telomerase activity, and normal chromosome end-capping, even in the presence of extensive clastogen-induced cytogenetic instability (mitomycin C [MMC], gamma-radiation). In addition, telomerase-deficient MEFs with humanlike telomere length and decreased Fancg expression (G5 Terc(-/-)/Fancg shRNA3 MEFs) display normal telomere maintenance. Finally, early-passage primary fibroblasts from patients with FA of complementation group G as well as primary human cells with reduced FANCG expression (FANCG shRNA IMR90 cells) show no signs of telomere dysfunction. Our observations indicate that accelerated telomere shortening in patients with FA is not due to a role of FANCG at telomeres but instead may be secondary to the disease. These findings suggest that telomerase-based therapies could be useful prophylactic agents in FA aplastic anemia by preserving their telomere reserve in the context of the disease.


Subject(s)
DNA-Binding Proteins/genetics , Telomere/genetics , Animals , Base Sequence , DNA Primers , DNA Repair/genetics , DNA-Binding Proteins/deficiency , Fanconi Anemia/genetics , Fanconi Anemia Complementation Group G Protein , Fibroblasts/physiology , Hematopoietic Stem Cells/physiology , Humans , Mice , Mice, Knockout , Polymerase Chain Reaction , RNA/genetics , RNA/metabolism , Spleen/cytology , Spleen/physiology , Telomerase/deficiency , Telomerase/genetics , Telomerase/metabolism
18.
DNA Repair (Amst) ; 3(1): 77-84, 2004 Jan 05.
Article in English | MEDLINE | ID: mdl-14697762

ABSTRACT

The genome protection pathway that is defective in patients with Fanconi anemia (FA) is controlled by at least eight genes, including BRCA2. A key step in the pathway involves the monoubiquitylation of FANCD2, which critically depends on a multi-subunit nuclear 'core complex' of at least six FANC proteins (FANCA, -C, -E, -F, -G, and -L). Except for FANCL, which has WD40 repeats and a RING finger domain, no significant domain structure has so far been recognized in any of the core complex proteins. By using a homology search strategy comparing the human FANCG protein sequence with its ortholog sequences in Oryzias latipes (Japanese rice fish) and Danio rerio (zebrafish) we identified at least seven tetratricopeptide repeat motifs (TPRs) covering a major part of this protein. TPRs are degenerate 34-amino acid repeat motifs which function as scaffolds mediating protein-protein interactions, often found in multiprotein complexes. In four out of five TPR motifs tested (TPR1, -2, -5, and -6), targeted missense mutagenesis disrupting the motifs at the critical position 8 of each TPR caused complete or partial loss of FANCG function. Loss of function was evident from failure of the mutant proteins to complement the cellular FA phenotype in FA-G lymphoblasts, which was correlated with loss of binding to FANCA. Although the TPR4 mutant fully complemented the cells, it showed a reduced interaction with FANCA, suggesting that this TPR may also be of functional importance. The recognition of FANCG as a typical TPR protein predicts this protein to play a key role in the assembly and/or stabilization of the nuclear FA protein core complex.


Subject(s)
DNA-Binding Proteins/genetics , Fanconi Anemia/genetics , Lymphocytes/metabolism , Mutation, Missense , Repetitive Sequences, Amino Acid , Amino Acid Sequence , Animals , Binding Sites/genetics , Cell Nucleus , DNA-Binding Proteins/metabolism , Fanconi Anemia Complementation Group G Protein , Humans , Lymphocytes/pathology , Molecular Sequence Data , Mutagenesis , Oryzias , Precipitin Tests , Sequence Homology, Amino Acid , Zebrafish
19.
Nat Genet ; 35(2): 165-70, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12973351

ABSTRACT

Fanconi anemia is a recessively inherited disease characterized by congenital defects, bone marrow failure and cancer susceptibility. Cells from individuals with Fanconi anemia are highly sensitive to DNA-crosslinking drugs, such as mitomycin C (MMC). Fanconi anemia proteins function in a DNA damage response pathway involving breast cancer susceptibility gene products, BRCA1 and BRCA2 (refs. 1,2). A key step in this pathway is monoubiquitination of FANCD2, resulting in the redistribution of FANCD2 to nuclear foci containing BRCA1 (ref. 3). The underlying mechanism is unclear because the five Fanconi anemia proteins known to be required for this ubiquitination have no recognizable ubiquitin ligase motifs. Here we report a new component of a Fanconi anemia protein complex, called PHF9, which possesses E3 ubiquitin ligase activity in vitro and is essential for FANCD2 monoubiquitination in vivo. Because PHF9 is defective in a cell line derived from an individual with Fanconi anemia, we conclude that PHF9 (also called FANCL) represents a novel Fanconi anemia complementation group (FA-L). Our data suggest that PHF9 has a crucial role in the Fanconi anemia pathway as the likely catalytic subunit required for monoubiquitination of FANCD2.


Subject(s)
Fanconi Anemia/genetics , Ligases/genetics , Nuclear Proteins/genetics , Sequence Deletion , Amino Acid Sequence , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Base Sequence , Chromosome Aberrations , Fanconi Anemia/enzymology , Fanconi Anemia Complementation Group D2 Protein , Fanconi Anemia Complementation Group L Protein , Humans , Ligases/deficiency , Molecular Sequence Data , Sequence Alignment , Sequence Homology, Amino Acid , Ubiquitin/metabolism
20.
Acta Haematol ; 108(4): 231-6, 2002.
Article in English | MEDLINE | ID: mdl-12432219

ABSTRACT

Fanconi anemia (FA) is an autosomal recessively inherited disease with diverse clinical symptoms including developmental anomalies, predisposition to neoplasia, and a deficiency of hematopoietic stem cells resulting in progressive aplastic anemia. FA is genetically heterogeneous with at least 8 genes being implicated on the basis of functional complementation studies. To date, six FA genes are known: FANCA, FANCC, FANCD2, FANCE, FANCF and FANCG, all of which encode orphan proteins sharing no homology to each other nor to any other known protein. In addition, they do not appear to possess any domains with homology to currently known protein domains, which makes a prediction about their molecular action difficult. Studying the molecular evolution of FA genes and their products using sensitive database search methods such as PSI-BLAST may provide novel insight into the nature of the FA pathway and its relationship to hematopoiesis, embryonic development and the origin of malignancies. Preliminary results of such an approach show that at least one FA protein, FANCG, may contain a known domain, suggesting that this protein is a member of the family of tetratricopeptide repeat-containing proteins.


Subject(s)
Evolution, Molecular , Fanconi Anemia/genetics , Sequence Alignment , Algorithms , Animals , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Databases, Protein , Fanconi Anemia Complementation Group G Protein , Humans , Phylogeny , Protein Structure, Tertiary , Repetitive Sequences, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...