Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Rev ; 124(8): 4543-4678, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38564235

ABSTRACT

The activity and durability of the Cu/ZnO/Al2O3 (CZA) catalyst formulation for methanol synthesis from CO/CO2/H2 feeds far exceed the sum of its individual components. As such, this ternary catalytic system is a prime example of synergy in catalysis, one that has been employed for the large scale commercial production of methanol since its inception in the mid 1960s with precious little alteration to its original formulation. Methanol is a key building block of the chemical industry. It is also an attractive energy storage molecule, which can also be produced from CO2 and H2 alone, making efficient use of sequestered CO2. As such, this somewhat unusual catalyst formulation has an enormous role to play in the modern chemical industry and the world of global economics, to which the correspondingly voluminous and ongoing research, which began in the 1920s, attests. Yet, despite this commercial success, and while research aimed at understanding how this formulation functions has continued throughout the decades, a comprehensive and universally agreed upon understanding of how this material achieves what it does has yet to be realized. After nigh on a century of research into CZA catalysts, the purpose of this Review is to appraise what has been achieved to date, and to show how, and how far, the field has evolved. To do so, this Review evaluates the research regarding this catalyst formulation in a chronological order and critically assesses the validity and novelty of various hypotheses and claims that have been made over the years. Ultimately, the Review attempts to derive a holistic summary of what the current body of literature tells us about the fundamental sources of the synergies at work within the CZA catalyst and, from this, suggest ways in which the field may yet be further advanced.

2.
Phys Chem Chem Phys ; 23(10): 5888-5896, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33660717

ABSTRACT

Copper containing materials are widely used in a range of catalytic applications. Here, we report the use of Cu K-edge high resolution XANES to determine the local site symmetry of copper ions during the thermal treatment of a Cu-Cr-Fe oxide catalyst. We exploited the Cu K-edge XANES spectral features, in particular the correlation between area under the pre-edge peak and its position to determine the local environment of Cu2+ ions. The information gained from this investigation rules out the presence of Cu2+ ions in a tetrahedral or square planar geometry, a mixture of these sites, or in a reduced oxidation state. Evidence is presented that the Cu2+ ions in the Cu-Cr-Fe oxide system are present in a distorted octahedral environment.

3.
Chemistry ; 18(10): 2923-30, 2012 Mar 05.
Article in English | MEDLINE | ID: mdl-22287271

ABSTRACT

Synthetic solvent systems for the fine-tuned preparation of CdS nanocrystallites, active in visible-light photocatalytic hydrogen production, were studied. To control crystallite size and spectral properties, the CdS crystals were synthesised by using different solvent systems, containing a series of tetrabutylammonium amino carboxylate ionic liquids as the crystal-growth control agents. Six samples of CdS, all with similar physical and spectral properties, exhibited greatly varying photocatalytic activity, with the most active sample outperforming the least active one by almost 60%. To rationalise this effect, the intermolecular interactions of the synthesis solvent system with the growing CdS nanocrystallites were characterised by using the Reichart betaine dye and the E(T)(N) polarity scale. A correlation was observed between the E(T)(N) values of the solvent system and the photocatalytic activity of the CdS nanocrystallite, suggesting that the hydrogen-bond-donating ability and/or dipolarity/polarisability interactions of the solvent system led to the preferential formation of active surfaces/surface sites on the CdS crystals.

4.
Chemistry ; 13(28): 8037-44, 2007.
Article in English | MEDLINE | ID: mdl-17623293

ABSTRACT

The partial oxidation of 4-tert-butyltoluene to 4-tert-butylbenzaldehyde by hydrogen peroxide in glacial acetic acid, catalyzed by bromide ions in combination with cobalt(II) acetate or cerium(III) acetate, has been studied in detail. Based on the observed differences in reaction rates and product distributions for the different catalysts, a reaction mechanism involving two independent pathways is proposed. After the initial formation of a benzylic radical species, either oxidation of this intermediate by the metal catalyst or reaction with bromine generated in situ occurs, depending on which catalyst is used. The first pathway leads to the exclusive formation of 4-tert-butylbenzaldehyde, whereas reaction of the radical intermediate with bromine leads to formation of the observed side products 4-tert-butylbenzyl bromide and its hydrolysis and solvolysis products 4-tert-butylbenzyl alcohol and 4-tert-butylbenzyl acetate, respectively. The cobalt(II) catalysts Co(OAc)(2) and Co(acac)(2) are able to quickly oxidize the radical intermediate, thereby largely preventing the bromination reaction (i.e., side-product formation) from occurring, and yield the aldehyde product with 75-80 % selectivity. In contrast, the cerium catalyst studied here exhibits an aldehyde selectivity of around 50 % due to the competing bromination reaction. Addition of extra hydrogen peroxide leads to an increased product yield of 72 % (cerium(III) acetate) or 58 % (cobalt(II) acetate). Product inhibition and the presence of increasing amounts of water in the reaction mixture do not play a role in the observed low incremental yields.

5.
Chemistry ; 11(16): 4591-601, 2005 Aug 05.
Article in English | MEDLINE | ID: mdl-15892152

ABSTRACT

The physicochemical processes that occur during the preparation of CoMo-Al2O3 hydrodesulfurization catalyst bodies have been investigated. To this end, the distribution of Mo and Co complexes, after impregnation of gamma-Al2O3 pellets with different CoMoP solutions (i.e., solutions containing Co, Mo, and phosphate), was monitored by Raman and UV-visible-NIR microspectroscopy. From the speciation of the different complexes over the catalyst bodies, insight was obtained into the interaction of the different components in the impregnation solution with the Al2O3 surface. It is shown that, after impregnation with a solution containing H2PMo11CoO40(5-), the reaction of phosphate with the Al2O3 leads to the disintegration of this complex. The consecutive independent transport of Co2+ complexes (fast) and Mo6+ complexes (slow) through the pores of the Al2O3 is envisaged. By the addition of extra phosphate and citrate to the impregnation solution, the formation of the desired heteropolyanion can be achieved inside the pellets. Ultimately, the H2PMo11CoO40(5-) distribution could be controlled by varying the aging time applied after impregnation. The power of a combination of spatially resolved spectroscopic techniques to monitor the preparation of supported catalyst bodies is illustrated.

6.
J Am Chem Soc ; 127(14): 5024-5, 2005 Apr 13.
Article in English | MEDLINE | ID: mdl-15810829

ABSTRACT

A UV-vis microspectroscopy methodology for monitoring the speciation and macrodistribution of catalyst-precursor species inside catalyst-support bodies at the initial stages of catalyst preparation has been developed. The setup is based upon optical-fiber technology and allows spatially resolved analysis of bisected catalyst bodies. The potential of this tool is demonstrated by two pore-volume impregnation studies involving Ni2+ d-d transition bands and Cr6+ charge-transfer bands.

7.
J Phys Chem B ; 109(30): 14513-22, 2005 Aug 04.
Article in English | MEDLINE | ID: mdl-16852829

ABSTRACT

Spatially resolved Raman and UV-vis-NIR microspectroscopy have been used as tools to study the preparation process of supported catalyst bodies. Detailed spectroscopic information on the local coordination geometry of two different metallic species along with their macro-distribution over the catalyst body has been obtained, enabling a good understanding of the physicochemical processes occurring during the drying process of impregnated gamma-Al(2)O(3) bodies. The formation and decomposition of the Keggin-type complex H(x)PMo(11)CoO(40)((7-)(x)-), which is considered to be a potential precursor for CoMoS(2)/gamma-Al(2)O(3) HDS catalysts, inside gamma-Al(2)O(3) bodies is shown to be a function of the composition of the impregnation solutions, the aging time, and the drying conditions applied. This knowledge has been successfully applied to prepare samples with a well-defined distribution of the bimetallic complex, that is, either egg-shell, egg-yolk, or homogeneous distributions. The Raman results are presented in a semiquantitative way by subtraction of a reference spectrum of a sample containing a known amount of H(x)PMo(11)CoO(40)((7-)(x)-) from the spectra recorded along the cross-section of the catalyst bodies.

8.
Chemphyschem ; 5(9): 1328-35, 2004 Sep 20.
Article in English | MEDLINE | ID: mdl-15499849

ABSTRACT

The effect of the isomorphous substitution of some of the Si atoms in ZSM-5 by Ge atoms on the Brønsted acid strength has been investigated by i) DFT calculations on cluster models of the formula ((HO)3SiO)3-Al-O(H)-T-(OSi(OH)3)3, with T=Si or Ge, and ((HO)3SiO)3-Al-O(H)-Si-(OGe(OH)3)(OSi(OH)3)2, ii) a 31P NMR study of zeolite samples contacted with trimethyl phosphine oxide probe molecules and iii) a X-ray photoelectron spectroscopy (XPS) study of ZSM-5 and Ge-ZSM-5 samples. The calculations reveal that the effect of Ge incorporation on the framework acidity strongly depends on the degree of substitution and on the exact T-atom positions that are occupied by Ge. High Ge concentrations allow for enhanced stabilisation of the deprotonated Ge-ZSM-5 through structural relaxation, resulting in a slightly higher acidity as compared to ZSM-5. This structural relaxation is not achievable in Ge-ZSM-5 with a low Ge content, which therefore has a slightly lower acidity than ZSM-5. The NMR study indicates no difference between the Brønsted acidity of ZSM-5(47) and Ge(0.09)ZSM-5(36). Instead, evidence for the presence of a substantial amount of Ge-OH groups in the Ge-containing samples was obtained from the NMR results, which is consistent with earlier FTIR studies. The XPS results do not point to an effect of Ge on the framework acidity of ZSM-5(47), instead, the results can be best interpreted by assuming the presence of additional Ge-OH and Si-OH groups near the surface of the Ge(0.08)ZSM-5(47) sample.


Subject(s)
Acids/chemistry , Germanium/chemistry , Organometallic Compounds/chemistry , Zeolites/chemistry , Computer Simulation , Crystallography, X-Ray , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Phosphorus Isotopes , Silicon/chemistry
9.
Dalton Trans ; (13): 1953-9, 2004 Jul 07.
Article in English | MEDLINE | ID: mdl-15252582

ABSTRACT

The synthesis and crystal structures of four CdII macrocyclic complexes containing mixed N-, O- and S-donors, [Cd(NO3)2([12]aneN2S2)] (1), [Cd(NO3)2([12]aneNS3)] (2), [Cd(NO3)2([15]aneNO2S2)] (3) and [Cd(NO3)([15]aneN2O2S)]NO3 (4), are presented. The metal ion is coordinated outside of the macrocyclic cavity in the complexes of the smaller macrocycles ([12]aneN2S2 and [12]aneNS3) while the flexibility of the larger macrocycles in and allows very different conformations to be adopted with a 'butterfly' geometry in and a flattened geometry in. No correlation between the number of sulfur donors and Cd-S bond distance in these types of complexes is observed, although the number and binding mode of the nitrato ligands is determined by the conformation and binding mode of the macrocycle. The position of the nitrato ligand also influences, through steric conflicts with the macrocyclic donor atoms, the bond distances in both ligand systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...