Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37267130

ABSTRACT

Genomics researchers increasingly use multiple reference genomes to comprehensively explore genetic variants underlying differences in detectable characteristics between organisms. Pangenomes allow for an efficient data representation of multiple related genomes and their associated metadata. However, current visual analysis approaches for exploring these complex genotype-phenotype relationships are often based on single reference approaches or lack adequate support for interpreting the variants in the genomic context with heterogeneous (meta)data. This design study introduces PanVA, a visual analytics design for pangenomic variant analysis developed with the active participation of genomics researchers. The design uniquely combines tailored visual representations with interactions such as sorting, grouping, and aggregation, allowing users to navigate and explore different perspectives on complex genotype-phenotype relations. Through evaluation in the context of plants and pathogen research, we show that PanVA helps researchers explore variants in genes and generate hypotheses about their role in phenotypic variation.

2.
IEEE Trans Vis Comput Graph ; 26(1): 1054-1063, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31425095

ABSTRACT

While analyzing multiple data sequences, the following questions typically arise: how does a single sequence change over time, how do multiple sequences compare within a period, and how does such comparison change over time. This paper presents a visual technique named STBins to answer these questions. STBins is designed for visual tracking of individual data sequences and also for comparison of sequences. The latter is done by showing the similarity of sequences within temporal windows. A perception study is conducted to examine the readability of alternative visual designs based on sequence tracking and comparison tasks. Also, two case studies based on real-world datasets are presented in detail to demonstrate usage of our technique.

3.
IEEE Trans Vis Comput Graph ; 22(1): 379-88, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26390467

ABSTRACT

Visualization of the trajectories of moving objects leads to dense and cluttered images, which hinders exploration and understanding. It also hinders adding additional visual information, such as direction, and makes it difficult to interactively extract traffic flows, i.e., subsets of trajectories. In this paper we present our approach to visualize traffic flows and provide interaction tools to support their exploration. We show an overview of the traffic using a density map. The directions of traffic flows are visualized using a particle system on top of the density map. The user can extract traffic flows using a novel selection widget that allows for the intuitive selection of an area, and filtering on a range of directions and any additional attributes. Using simple, visual set expressions, the user can construct more complicated selections. The dynamic behaviors of selected flows may then be shown in annotation windows in which they can be interactively explored and compared. We validate our approach through use cases where we explore and analyze the temporal behavior of aircraft and vessel trajectories, e.g., landing and takeoff sequences, or the evolution of flight route density. The aircraft use cases have been developed and validated in collaboration with domain experts.

4.
IEEE Trans Vis Comput Graph ; 19(12): 2159-68, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24051782

ABSTRACT

In this work, we present an interactive system for visual analysis of urban traffic congestion based on GPS trajectories. For these trajectories we develop strategies to extract and derive traffic jam information. After cleaning the trajectories, they are matched to a road network. Subsequently, traffic speed on each road segment is computed and traffic jam events are automatically detected. Spatially and temporally related events are concatenated in, so-called, traffic jam propagation graphs. These graphs form a high-level description of a traffic jam and its propagation in time and space. Our system provides multiple views for visually exploring and analyzing the traffic condition of a large city as a whole, on the level of propagation graphs, and on road segment level. Case studies with 24 days of taxi GPS trajectories collected in Beijing demonstrate the effectiveness of our system.


Subject(s)
Computer Graphics , Geographic Information Systems/statistics & numerical data , Models, Statistical , Motor Vehicles/statistics & numerical data , Pattern Recognition, Automated/methods , User-Computer Interface , Computer Simulation
5.
IEEE Trans Vis Comput Graph ; 17(12): 2518-27, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22034373

ABSTRACT

We consider moving objects as multivariate time-series. By visually analyzing the attributes, patterns may appear that explain why certain movements have occurred. Density maps as proposed by Scheepens et al. [25] are a way to reveal these patterns by means of aggregations of filtered subsets of trajectories. Since filtering is often not sufficient for analysts to express their domain knowledge, we propose to use expressions instead. We present a flexible architecture for density maps to enable custom, versatile exploration using multiple density fields. The flexibility comes from a script, depicted in this paper as a block diagram, which defines an advanced computation of a density field. We define six different types of blocks to create, compose, and enhance trajectories or density fields. Blocks are customized by means of expressions that allow the analyst to model domain knowledge. The versatility of our architecture is demonstrated with several maritime use cases developed with domain experts. Our approach is expected to be useful for the analysis of objects in other domains.

6.
IEEE Trans Vis Comput Graph ; 16(4): 571-82, 2010.
Article in English | MEDLINE | ID: mdl-20467056

ABSTRACT

Illustrative techniques are generally applied to produce stylized renderings. Various illustrative styles have been applied to volumetric data sets, producing clearer images and effectively conveying visual information. We adopt particle systems to produce user-configurable stylized renderings from the volume data, imitating traditional pen-and-ink drawings. In the following, we present an interactive GPU-based illustrative volume rendering framework, called VolFliesGPU. In this framework, isosurfaces are sampled by evenly distributed particle sets, delineating surface shape by illustrative styles. The appearance of these styles is based on locally-measured surface properties. For instance, hatches convey surface shape by orientation and shape characteristics are enhanced by color, mapped using a curvature-based transfer function. Hidden-surfaces are generally removed to avoid visual clutter, after that a combination of styles is applied per isosurface. Multiple surfaces and styles can be explored interactively, exploiting parallelism in both graphics hardware and particle systems. We achieve real-time interaction and prompt parametrization of the illustrative styles, using an intuitive GPGPU paradigm that delivers the computational power to drive our particle system and visualization algorithms.


Subject(s)
Algorithms , Computer Graphics , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Models, Theoretical , Computer Simulation , Particle Size , User-Computer Interface
7.
Bioinformatics ; 22(3): 354-5, 2006 Feb 01.
Article in English | MEDLINE | ID: mdl-16332715

ABSTRACT

The software package DNAVis offers a fast, interactive and real-time visualization of DNA sequences and their comparative genome annotations. DNAVis implements advanced methods of information visualization such as linked views, perspective walls and semantic zooming, in addition to the display of heterologous data in dot plot-like matrix views.


Subject(s)
Algorithms , Chromosome Mapping/methods , Computer Graphics , Documentation/methods , Sequence Analysis, DNA/methods , Software , User-Computer Interface , Sequence Alignment/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...