Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Clin Med ; 13(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38256606

ABSTRACT

Background: Chronic obstructive pulmonary disease (COPD) is a major health concern. Acute exacerbations (AECOPD) may require intensive care unit (ICU) admission and mechanical ventilation. Acute infections and chronic colonization of the respiratory system are known to precipitate AECOPD. Detailed knowledge of the respiratory microbiome could lead to effective treatment and prevention of exacerbations. Objective: The aim of this review is to summarize the available evidence on the respiratory microbiome of patients with a severe AECOPD requiring mechanical ventilation and intensive care admission. Methods: A systematic literature search was conducted to identify the published papers until January 2023. The collected data were then subjected to qualitative analysis. After the first analysis, a secondary focused review of the most recent publications studying the relationship between microbiome and mortality in AECOPD was performed. Results: Out of 120 screened articles six articles were included in this review. Potentially pathogenic microorganisms (PPMs) were identified in 30% to 72% of the patients with community-acquired bacteria, gram-negative enteric bacilli, Stenotrophomonas and Pseudomonas being the most frequently isolated. During hospitalization, 21% of patients experienced colonization by PPMs. Adequate antimicrobial therapy resulted in the eradication of 77% of the identified PPMs. However, 24% of the bacteria displayed multi-drug resistance leading to prolonged or failure of eradication. Conclusion: PPMs are prevalent in a significant proportion of patients experiencing an AECOPD. The most identified PPMs include community-acquired pathogens and gram-negative enteric bacilli. Notably, no differences in mortality or duration of ventilation were observed between patients with and without isolated PPMs. However, the included studies did not investigate the virome of the patients, which may influence the microbiome and the outcome of infection. Therefore, further research is essential to comprehensively investigate the complete microbial and viral composition of the lower respiratory system in COPD patients admitted to the ICU.

2.
Antimicrob Resist Infect Control ; 12(1): 148, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38124120

ABSTRACT

BACKGROUND: The dynamics of Staphylococcus aureus in patients and the hospital environment are relatively unknown. We studied these dynamics in a tertiary care hospital in the Netherlands. METHODS: Nasal samples were taken from adult patients at admission and discharge. Isolates cultured from clinical samples taken before and during hospitalization from these patients were included. Environmental samples of patient rooms were taken over a three-year period. Finally, isolates from clinical samples from patients with an epidemiological link to S. aureus positive rooms were included. Staphylococcal protein A (spa) typing was performed. RESULTS: Nasal samples were taken from 673 patients. One hundred eighteen (17.5%) were positive at admission and discharge, 15 (2.2%) patients acquired S. aureus during hospitalization. Nineteen patients had a positive clinical sample during hospitalization, 15.9% of the S. aureus were considered as from an exogenous source. One hundred and forty (2.8%) environmental samples were S. aureus positive. No persistent contamination of surfaces was observed. Isolates were highly diverse: spa typing was performed for 893 isolates, identifying 278 different spa types, 161 of these spa types were observed only once. CONCLUSION: Limited transmission could be identified between patients and the hospital environment, and from patient-to-patient. Exogenous acquisition was assumed to occur in 15% of clinical samples. Environmental contamination was infrequent, temporarily, and coincided with the strain from the patient admitted to the room at that time. MRSA was rare and not found in the environment.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Adult , Humans , Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Netherlands/epidemiology , Tertiary Care Centers , Staphylococcal Infections/epidemiology
3.
TH Open ; 7(3): e217-e225, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37501780

ABSTRACT

Background Fibrinogen variants as a result of alternative messenger RNA splicing or protein degradation can affect fibrin(ogen) functions. The levels of these variants might be altered during coronavirus disease 2019 (COVID-19), potentially affecting disease severity or the thrombosis risk. Aim To investigate the levels of fibrinogen variants in plasma of patients with COVID-19. Methods In this case-control study, we measured levels of functional fibrinogen using the Clauss assay. Enzyme-linked immunosorbent assays were used to measure antigen levels of total, intact (nondegraded Aα chain), extended Aα chain (α E ), and γ' fibrinogen in healthy controls, patients with pneumococcal infection in the intensive care unit (ICU), ward patients with COVID-19, and ICU patients with COVID-19 (with and without thrombosis, two time points). Results Healthy controls and ward patients with COVID-19 ( n = 10) showed similar fibrinogen (variant) levels. ICU patients with COVID-19 who later did ( n = 19) or did not develop thrombosis ( n = 18) and ICU patients with pneumococcal infection ( n = 6) had higher absolute levels of functional, total, intact, and α E fibrinogen than healthy controls ( n = 7). The relative α E fibrinogen levels were higher in ICU patients with COVID-19 than in healthy controls, while relative γ' fibrinogen levels were lower. After diagnosis of thrombosis, only the functional fibrinogen levels were higher in ICU patients with COVID-19 and thrombosis than in those without, while no differences were observed in the other fibrinogen variants. Conclusion Our results show that severe COVID-19 is associated with increased levels of α E fibrinogen and decreased relative levels of γ' fibrinogen, which may be a cause or consequence of severe disease, but this is not associated with the development of thrombosis.

4.
PLoS One ; 18(7): e0289163, 2023.
Article in English | MEDLINE | ID: mdl-37490485

ABSTRACT

OBJECTIVE: Timely identification of patients who carry multidrug-resistant microorganisms (MDRO) is needed to prevent nosocomial spread to other patients and to the hospital environment. We aimed to compare the yield of a universal screening strategy upon admission to the currently installed universal risk assessment combined with risk-based screening upon admission. METHODS: This observational study was conducted within a prospective cohort study. From January 1, 2018, until September 1, 2019, patients admitted to our hospital were asked to participate. Nasal and perianal samples were taken upon admission and checked for the presence of MDRO. The results of the universal risk assessment and risk-based screening were collected retrospectively from electronic health records. RESULTS: In total, 1017 patients with 1069 separate hospital admissions participated in the study. Universal screening identified 38 (3.6%) unknown MDRO carriers upon admission (37 individual patients), all carrying extended-spectrum beta-lactamase-producing Enterobacterales. For 946 of 1069 (88.5%) patients, both the universal risk assessment and universal screening were performed. For 19 (2.0%) admissions, ≥1 risk factor was identified. The universal risk assessment identified one (0.1%) unknown carrier, compared to 37 out of 946 carriers for the universal screening (P<0.001). Of the 37 carriers identified through the universal screening, 35 (94.6%) reported no risk factors. CONCLUSIONS: Our results show that in our low endemic setting, a universal screening strategy identified significantly more MDRO carriers than the currently implemented universal risk-assessment. When implementing a universal risk-assessment, risk factors should be carefully selected to be able to identify ESBL-E carriers. While the universal screening identified more MDRO carriers, further research is needed to determine the cost-effectiveness of this strategy.


Subject(s)
Drug Resistance, Multiple , Risk Assessment , Patient Admission , Prospective Studies , Humans , Male , Female , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over
6.
Antimicrob Resist Infect Control ; 11(1): 76, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35655322

ABSTRACT

BACKGROUND: Extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-E) are a well-known cause of healthcare-associated infections. The implementation of single-occupancy rooms is believed to decrease the spread of ESBL-E. Additionally, implementation of single-occupancy rooms is expected to reduce the need for intra-hospital patient transfers. We studied the impact of a new hospital with 100% single-occupancy rooms on the acquisition of ESBL-E and on intra-hospital patient transfers. METHODS: In 2018, the Erasmus MC University Medical Center moved from an old, 1200-bed hospital with mainly multiple-occupancy rooms, to a newly constructed 522-bed hospital with 100% single-occupancy rooms. Adult patients admitted between January 2018 and September 2019 with an expected hospitalization of ≥ 48 h were asked to participate in this study. Perianal samples were taken at admission and discharge. Patient characteristics and clinical information, including number of intra-hospital patient transfers, were collected from the patients' electronic health records. RESULTS: Five hundred and ninety-seven patients were included, 225 in the old and 372 in the new hospital building. Fifty-one (8.5%) ESBL-E carriers were identified. Thirty-four (66.7%) patients were already positive at admission, of which 23 without recent hospitalization. Twenty patients acquired an ESBL-E, seven (3.1%) in the old and 13 (3.5%) in the new hospital building (P = 0.801). Forty-one (80.4%) carriers were only detected by the active screening performed during this study. Only 10 (19.6%) patients, six before and four during hospitalization, showed ESBL-E in a clinical sample taken on medical indication. Fifty-six (24.9%) patients were transferred to other rooms in the old hospital, compared to 53 (14.2%) in the new hospital building (P = 0.001). Intra-hospital patient transfers were associated with ESBL-E acquisition (OR 3.18, 95%CI 1.27-7.98), with increasing odds when transferred twice or more. CONCLUSION: Transitioning to 100% single-occupancy rooms did not decrease ESBL-E acquisition, but did significantly decrease the number of intra-hospital patient transfers. The latter was associated with lower odds on ESBL-E acquisition. ESBL-E carriers remained largely unidentified through clinical samples. TRIAL REGISTRATION: This study was retrospectively registered in the Dutch National Trial Register on 24-02-2020, with registration number NL8406.


Subject(s)
Hospitals , Patient Transfer , Adult , Humans , Inpatients , Prospective Studies , beta-Lactamases
7.
J Thromb Haemost ; 20(6): 1412-1420, 2022 06.
Article in English | MEDLINE | ID: mdl-35316570

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 infection is associated with an increased incidence of thrombosis. OBJECTIVES: By studying the fibrin network structure of coronavirus disease 2019 (COVID-19) patients, we aimed to unravel pathophysiological mechanisms that contribute to this increased risk of thrombosis. This may contribute to optimal prevention and treatment of COVID-19 related thrombosis. PATIENTS/METHODS: In this case-control study, we collected plasma samples from intensive care unit (ICU) patients with COVID-19, with and without confirmed thrombosis, between April and December 2020. Additionally, we collected plasma from COVID-19 patients admitted to general wards without thrombosis, from ICU patients with pneumococcal infection, and from healthy controls. Fibrin fiber diameters and fibrin network density were quantified in plasma clots imaged with stimulated emission depletion microscopy and confocal microscopy. Finally, we determined the sensitivity to fibrinolysis. RESULTS: COVID-19 ICU patients (n = 37) and ICU patients with pneumococcal disease (n = 7) showed significantly higher fibrin densities and longer plasma clot lysis times than healthy controls (n = 7). No differences were observed between COVID-19 ICU patients with and without thrombosis, or ICU patients with pneumococcal infection. At a second time point, after diagnosis of thrombosis or at a similar time point in patients without thrombosis, we observed thicker fibers and longer lysis times in COVID-19 ICU patients with thrombosis (n = 19) than in COVID-19 ICU patients without thrombosis (n = 18). CONCLUSIONS: Our results suggest that severe COVID-19 is associated with a changed fibrin network structure and decreased susceptibility to fibrinolysis. Because these changes were not exclusive to COVID-19 patients, they may not explain the increased thrombosis risk.


Subject(s)
COVID-19 , Pneumococcal Infections , Thrombosis , Case-Control Studies , Fibrin , Fibrin Clot Lysis Time , Fibrinolysis/physiology , Humans , Intensive Care Units , Pneumococcal Infections/complications
8.
J Clin Immunol ; 42(2): 232-239, 2022 02.
Article in English | MEDLINE | ID: mdl-34767118

ABSTRACT

PURPOSE: To study the effect of interferon-α2 auto-antibodies (IFN-α2 Abs) on clinical and virological outcomes in critically ill COVID-19 patients and the risk of IFN-α2 Abs transfer during convalescent plasma treatment. METHODS: Sera from healthy controls, cases of COVID-19, and other respiratory illness were tested for IFN-α2 Abs by ELISA and a pseudo virus-based neutralization assay. The effects of disease severity, sex, and age on the risk of having neutralizing IFN-α2 Abs were determined. Longitudinal analyses were performed to determine association between IFN-α2 Abs and survival and viral load and whether serum IFN-α2 Abs appeared after convalescent plasma transfusion. RESULTS: IFN-α2 neutralizing sera were found only in COVID-19 patients, with proportions increasing with disease severity and age. In the acute stage of COVID-19, all sera from patients with ELISA-detected IFN-α2 Abs (13/164, 7.9%) neutralized levels of IFN-α2 exceeding physiological concentrations found in human plasma and this was associated with delayed viral clearance. Convalescent plasma donors that were anti-IFN-α2 ELISA positive (3/118, 2.5%) did not neutralize the same levels of IFN-α2. Neutralizing serum IFN-α2 Abs were associated with delayed viral clearance from the respiratory tract. CONCLUSIONS: IFN-α2 Abs were detected by ELISA and neutralization assay in COVID-19 patients, but not in ICU patients with other respiratory illnesses. The presence of neutralizing IFN-α2 Abs in critically ill COVID-19 is associated with delayed viral clearance. IFN-α2 Abs in COVID-19 convalescent plasma donors were not neutralizing in the conditions tested.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , COVID-19/therapy , Interferon alpha-2/immunology , Plasma/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antiviral Agents/immunology , Blood Component Transfusion/methods , Critical Illness , Female , Humans , Immunization, Passive/methods , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/immunology , COVID-19 Serotherapy
9.
J Clin Med ; 10(11)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199528

ABSTRACT

Several reports have been published on Aspergillus findings in COVID-19 patients leading to a proposition of new disease entity COVID-19-associated pulmonary aspergillosis. This scoping review is designed at clarifying the concepts on how the findings of Aspergillus spp. in COVID-19 patients were interpreted. We searched Medline to identify the studies on Aspergillus spp. findings in COVID-19 patients. Included were observational studies containing the following information: explicit mention of the total number of the study population, study period, reason for obtaining respiratory samples, case definition, and clinical outcomes. Excluded were case series, case reports and reviews. Identified were 123 publications, and 8 observational studies were included. From the included studies the following issues were identified. The proportion of immunocompromised patients considered as host factors varied from 0 to 17%. Most of the studies did not mention radiographic findings explicitly. Respiratory samples were mostly obtained to investigate clinical deterioration. Aspergillus culture, antigen or PCR testing on bronchoalveolar lavage (BAL) fluid were performed in between 23.3% and 66.3% of the study population. Two studies performed periodic samples of BAL. Galactomannan index (GI) positivity in BAL was between 10% and 28%. GI in blood was found in 0.9% to 6.7% of the available samples. The prevalence of COVID-19-associated pulmonary aspergillosis ranged from 2.7% to 27.7%. Studies compared the mortality between defined cases and non-cases, and all showed increased mortality in cases. No studies showed that antifungal treatment reduced mortality. Concluding, this review showed how studies defined the clinical entity COVID-19-associated pulmonary aspergillosis where positive Aspergillus test in the respiratory sample was the main driver for the diagnosis. There were many differences between studies in terms of test algorithm and Aspergillus test used that largely determined the prevalence. Whether antifungal therapy, either as prophylaxis, pre-emptive or targeted therapy will lead to better outcomes of COVID-19-associated pulmonary aspergillosis patients is still need to be answered.

10.
mSphere ; 6(3): e0031121, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34047654

ABSTRACT

COVID-19 is associated with a wide range of extrarespiratory complications, of which the pathogenesis is currently not fully understood. However, both systemic spread and systemic inflammatory responses are thought to contribute to the systemic pathogenesis. In this study, we determined the temporal kinetics of viral RNA in serum (RNAemia) and the associated inflammatory cytokines and chemokines during the course of COVID-19 in hospitalized patients. We show that RNAemia can be detected in 90% of the patients who develop critical disease, compared to 50% of the patients who develop moderate or severe disease. Furthermore, RNAemia lasts longer in patients who develop critical disease. Elevated levels of interleukin-10 (IL-10) and MCP-1-but not IL-6-are associated with viral load in serum, whereas higher levels of IL-6 in serum were associated with the development of critical disease. In conclusion, RNAemia is common in hospitalized patients, with the highest frequency and duration in patients who develop critical disease. The fact that several cytokines or chemokines are directly associated with the presence of viral RNA in the circulation suggests that the development of RNAemia is an important factor in the systemic pathogenesis of COVID-19. IMPORTANCE Severe COVID-19 can be considered a systemic disease as many extrarespiratory complications occur. However, the systemic pathogenesis is poorly understood. Here, we show that the presence of viral RNA in the blood (RNAemia) occurs more frequently in patients who develop critical disease, compared to patients with moderate or severe disease. In addition, RNAemia is associated with increased levels of inflammatory cytokines and chemokines, like MCP-1 and IL-10, in serum during the course of disease. This suggests that extrarespiratory spread of SARS-CoV-2 contributes to systemic inflammatory responses, which are an important factor in the systemic pathogenesis of COVID-19.


Subject(s)
COVID-19/immunology , Cytokines/blood , RNA, Viral/blood , SARS-CoV-2/genetics , COVID-19/etiology , COVID-19/virology , Hospitalization , Humans , Kinetics , Severity of Illness Index
11.
J Infect Dis ; 223(9): 1512-1521, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33507309

ABSTRACT

Lower respiratory tract (LRT) disease induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can deteriorate to acute respiratory distress syndrome (ARDS). Because the release of neutrophil extracellular traps (NETs) is implicated in ARDS pathogenesis, we investigated the presence of NETs and correlates of pathogenesis in blood and LRT samples of critically ill patients with COVID-19. Plasma NET levels peaked early after intensive care unit admission and were correlated with the SARS-CoV-2 RNA load in sputum and levels of neutrophil-recruiting chemokines and inflammatory markers in plasma samples. The baseline plasma NET quantity was correlated with disease severity but was not associated with soluble markers of thrombosis or with development of thrombosis. High NET levels were present in LRT samples and persisted during the course of COVID-19, consistent with the detection of NETs in bronchi and alveolar spaces in lung tissue from deceased patient with COVID-19. Thus, NETs are produced and retained in the LRT of critically ill patients with COVID-19 and could contribute to SARS-CoV-2-induced ARDS disease.


Subject(s)
Bronchoalveolar Lavage Fluid/virology , COVID-19/complications , COVID-19/pathology , Extracellular Traps/virology , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/pathology , SARS-CoV-2 , Adult , Aged , Biomarkers , Chemokines/blood , Cohort Studies , Computed Tomography Angiography , Critical Illness , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunohistochemistry , Male , Middle Aged , Netherlands/epidemiology , Prospective Studies , Severity of Illness Index , Thrombosis/virology , Viral Load
12.
Nat Commun ; 12(1): 267, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431879

ABSTRACT

Key questions in COVID-19 are the duration and determinants of infectious virus shedding. Here, we report that infectious virus shedding is detected by virus cultures in 23 of the 129 patients (17.8%) hospitalized with COVID-19. The median duration of shedding infectious virus is 8 days post onset of symptoms (IQR 5-11) and drops below 5% after 15.2 days post onset of symptoms (95% confidence interval (CI) 13.4-17.2). Multivariate analyses identify viral loads above 7 log10 RNA copies/mL (odds ratio [OR] of 14.7 (CI 3.57-58.1; p < 0.001) as independently associated with isolation of infectious SARS-CoV-2 from the respiratory tract. A serum neutralizing antibody titre of at least 1:20 (OR of 0.01 (CI 0.003-0.08; p < 0.001) is independently associated with non-infectious SARS-CoV-2. We conclude that quantitative viral RNA load assays and serological assays could be used in test-based strategies to discontinue or de-escalate infection prevention and control precautions.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2 , Virus Shedding , Aged , COVID-19 Testing , Female , Humans , Male , Middle Aged , Multivariate Analysis , Odds Ratio , RNA, Viral , Respiratory System/virology , Viral Load
13.
J Clin Microbiol ; 59(3)2021 02 18.
Article in English | MEDLINE | ID: mdl-33277340

ABSTRACT

The aim of this study was to describe the frequency of positive Aspergillus tests in COVID-19 patients and investigate the association between COVID-19 and a positive Aspergillus test result. We compared the proportion of positive Aspergillus tests in COVID-19 patients admitted to the intensive care unit (ICU) for >24 h with two control groups: patients with community-acquired pneumonia with (i) a PCR-confirmed influenza infection (considered a positive control since the link between influenza and invasive aspergillosis has been established) and (ii) Streptococcus pneumoniae pneumonia (in whom positive Aspergillus tests are mostly considered as colonization). During the study period, 92 COVID-19 patients (mean [standard deviation] age, 62 [14] years; 76.1% males), 48 influenza patients (55 [14]; 56.2% males), and 65 pneumococcal pneumonia patients (58 [15], 63,1% males) were identified. Any positive Aspergillus test from any respiratory sample was found in 10.9% of the COVID-19 patients, 6.2% of the patients with pneumococcal pneumonia, and 22.9% of those infected with influenza. A positive culture or PCR or galactomannan test on bronchoalveolar lavage (BAL) fluid only was found in 5.4% of COVID-19 patients, which was lower than in patients with influenza (18.8%) and comparable to that in the pneumococcal pneumonia group (4.6%). Using logistic regression analysis, the odds ratio (OR) (95% confidence interval) for a positive Aspergillus test on BAL fluid for COVID-19 patients was 1.2 (0.3 to 5.1; P = 0.8) compared to the pneumococcal pneumonia group, while it was 0.2 (0.1 to 0.8; P = 0.02) compared to the influenza group. This difference remained significant when corrected for age and sex. In conclusion, in COVID-19 patients, the prevalence of a positive Aspergillus test was comparable to that in patients admitted for pneumococcal pneumonia but substantially lower than what we observed in patients with influenza.


Subject(s)
COVID-19/complications , Intensive Care Units , Invasive Pulmonary Aspergillosis , Aged , Aspergillus , Bronchoalveolar Lavage Fluid , Female , Humans , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/epidemiology , Male , Mannans , Middle Aged
14.
Nat Commun ; 11(1): 3436, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32632160

ABSTRACT

The world is entering a new era of the COVID-19 pandemic in which there is an increasing call for reliable antibody testing. To support decision making on the deployment of serology for either population screening or diagnostics, we present a detailed comparison of serological COVID-19 assays. We show that among the selected assays there is a wide diversity in assay performance in different scenarios and when correlated to virus neutralizing antibodies. The Wantai ELISA detecting total immunoglobulins against the receptor binding domain of SARS CoV-2, has the best overall characteristics to detect functional antibodies in different stages and severity of disease, including the potential to set a cut-off indicating the presence of protective antibodies. The large variety of available serological assays requires proper assay validation before deciding on deployment of assays for specific applications.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Serologic Tests/standards , Antibodies, Neutralizing/blood , Betacoronavirus , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Enzyme-Linked Immunosorbent Assay , High-Throughput Screening Assays , Humans , Luminescent Measurements , Neutralization Tests , Pandemics , SARS-CoV-2 , Sensitivity and Specificity
15.
Sci Immunol ; 5(48)2020 06 26.
Article in English | MEDLINE | ID: mdl-32591408

ABSTRACT

SARS-CoV-2 has been identified as the causative agent of a global outbreak of respiratory tract disease (COVID-19). In some patients the infection results in moderate to severe acute respiratory distress syndrome (ARDS), requiring invasive mechanical ventilation. High serum levels of IL-6, IL-10 and an immune hyperresponsiveness referred to as a 'cytokine storm' have been associated with poor clinical outcome. Despite the large numbers of COVID-19 cases and deaths, information on the phenotype and kinetics of SARS-CoV-2-specific T cells is limited. Here, we studied 10 COVID-19 patients who required admission to an intensive care unit and detected SARS-CoV-2-specific CD4+ and CD8+ T cells in 10 out of 10 and 8 out of 10 patients, respectively. We also detected low levels of SARS-CoV-2-reactive T cells in 2 out of 10 healthy controls not previously exposed to SARS-CoV-2, which is indicative of cross-reactivity due to past infection with 'common cold' coronaviruses. The strongest T-cell responses were directed to the spike (S) surface glycoprotein, and SARS-CoV-2-specific T cells predominantly produced effector and Th1 cytokines, although Th2 and Th17 cytokines were also detected. Furthermore, we studied T-cell kinetics and showed that SARS-CoV-2-specific T cells are present relatively early and increase over time. Collectively, these data shed light on the potential variations in T-cell responses as a function of disease severity, an issue that is key to understanding the potential role of immunopathology in the disease, and also inform vaccine design and evaluation.


Subject(s)
Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , Phenotype , Pneumonia, Viral/immunology , Respiratory Distress Syndrome/immunology , Aged , COVID-19 , Cells, Cultured , Coronavirus Infections/blood , Coronavirus Infections/virology , Cytokines/metabolism , Female , Humans , Immunologic Memory , Kinetics , Longitudinal Studies , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/virology , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Viral Load/immunology
18.
J Clin Transl Res ; 6(4): 179-186, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-33501388

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is a challenge for intensive care units (ICU) in part due to the failure to identify risks for patients early and the inability to render an accurate prognosis. Previous reports suggest a strong association between hypercoagulability and poor outcome. Factors related to hemostasis may, therefore, serve as tools to improve the management of COVID-19 patients. AIM: The purpose of this report is to develop a model to determine whether it is possible to early identify COVID-19 patients at risk for thromboembolic complications (TCs). METHODS: We analyzed electronic health record data of 108 consecutive COVID-19 patients admitted to the adult ICU of the Erasmus University Medical Center between February 27 and May 20, 2020. By training a decision tree classifier on 66% of the available data, a model for the prediction of TCs was developed. RESULTS: The median (interquartile range) age was 62 (53-70) years and 73% were male. Forty-three patients (40%) developed a TC during their ICU stay. Mortality was higher for patients in the TCs group compared to the control group (26% vs. 8%, P=0.03). Lactate dehydrogenase, standardized bicarbonate, albumin, and leukocytes were identified by the Decision Tree classifier as the most powerful predictors for TCs 2 days before the onset of the TC, with a sensitivity of 73% and a positive likelihood ratio of 2.7 on the test dataset. CONCLUSIONS: Clinically relevant TCs frequently occur in critically ill COVID-19 patients. These can successfully be predicted using a decision tree model. Although this model could be of special importance to aid clinical decision making, its generalizability and clinical impact should be determined in a larger population. RELEVANCE FOR PATIENTS: Recently, severe TCs were observed in COVID-19 patients with progressive respiratory failure warranting ICU treatment. Timely identification of patients at risk of developing TCs is critical inasmuch as it would enable clinicians to initiate potentially salvaging therapeutic anticoagulation.

19.
J Crit Care ; 50: 11-16, 2019 04.
Article in English | MEDLINE | ID: mdl-30465893

ABSTRACT

PURPOSE: In critical illness, the relation between the macrocirculation, microcirculation and organ dysfunction, such as acute kidney injury (AKI), is complex. This study aimed at identifying predictors for AKI in patients with cardiogenic shock. MATERIALS AND METHODS: Thirty-nine adult cardiogenic shock patients, with an admission creatinine <200 µmol l-1, and whose microcirculation was measured within 48 h were enrolled. Patient data were analyzed if AKI stage ≥1 developed according to the Kidney Disease/Improving Outcomes classification within 48 h after admission. Variables with a p < .05 in the univariate analysis were considered for analysis with logistic regression. RESULTS: Twenty-four patients (61.5%) developed AKI within 48 h. The group that developed AKI had higher central venous pressures (CVP), lower diastolic arterial blood pressures and mean perfusion pressures, higher maximum ventilator pressures as well as positive end expiratory pressures and were treated with higher dosages of dobutamine. There was no difference of the microcirculation. In the multivariate logistic regression analysis, CVP was the only independent predictor for AKI (OR 1.241; 95% CI 1.030-1.495; p = .023). CONCLUSIONS: In this population of patients with cardiogenic shock, CVP was associated with the development of AKI.


Subject(s)
Acute Kidney Injury/physiopathology , Central Venous Pressure/physiology , Shock, Cardiogenic/physiopathology , Acute Kidney Injury/etiology , Adult , Aged , Female , Humans , Male , Microcirculation/physiology , Middle Aged , Retrospective Studies , Risk Factors , Shock, Cardiogenic/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...