Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Am Heart Assoc ; 13(13): e033155, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38934864

ABSTRACT

BACKGROUND: Current protocols generate highly pure human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in vitro that recapitulate characteristics of mature in vivo cardiomyocytes. Yet, a risk of arrhythmias exists when hiPSC-CMs are injected into large animal models. Thus, understanding hiPSC-CM maturational mechanisms is crucial for clinical translation. Forkhead box (FOX) transcription factors regulate postnatal cardiomyocyte maturation through a balance between FOXO and FOXM1. We also previously demonstrated that p53 activation enhances hiPSC-CM maturation. Here, we investigate whether p53 activation modulates the FOXO/FOXM1 balance to promote hiPSC-CM maturation in 3-dimensional suspension culture. METHODS AND RESULTS: Three-dimensional cultures of hiPSC-CMs were treated with Nutlin-3a (p53 activator, 10 µM), LOM612 (FOXO relocator, 5 µM), AS1842856 (FOXO inhibitor, 1 µM), or RCM-1 (FOXM1 inhibitor, 1 µM), starting 2 days after onset of beating, with dimethyl sulfoxide (0.2% vehicle) as control. P53 activation promoted hiPSC-CM metabolic and electrophysiological maturation alongside FOXO upregulation and FOXM1 downregulation, in n=3 to 6 per group for all assays. FOXO inhibition significantly decreased expression of cardiac-specific markers such as TNNT2. In contrast, FOXO activation or FOXM1 inhibition promoted maturational characteristics such as increased contractility, oxygen consumption, and voltage peak maximum upstroke velocity, in n=3 to 6 per group for all assays. Further, by single-cell RNA sequencing of n=2 LOM612-treated cells compared with dimethyl sulfoxide, LOM612-mediated FOXO activation promoted expression of cardiac maturational pathways. CONCLUSIONS: We show that p53 activation promotes FOXO and suppresses FOXM1 during 3-dimensional hiPSC-CM maturation. These results expand our understanding of hiPSC-CM maturational mechanisms in a clinically-relevant 3-dimensional culture system.


Subject(s)
Cell Differentiation , Forkhead Box Protein M1 , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Tumor Suppressor Protein p53 , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Forkhead Box Protein M1/metabolism , Forkhead Box Protein M1/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Cell Culture Techniques, Three Dimensional/methods , Cells, Cultured , Signal Transduction , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics
3.
Bioscience ; 68(4): 281-287, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29662248

ABSTRACT

Increasing surface temperatures, Arctic sea-ice loss, and other evidence of anthropogenic global warming (AGW) are acknowledged by every major scientific organization in the world. However, there is a wide gap between this broad scientific consensus and public opinion. Internet blogs have strongly contributed to this consensus gap by fomenting misunderstandings of AGW causes and consequences. Polar bears (Ursus maritimus) have become a "poster species" for AGW, making them a target of those denying AGW evidence. Here, focusing on Arctic sea ice and polar bears, we show that blogs that deny or downplay AGW disregard the overwhelming scientific evidence of Arctic sea-ice loss and polar bear vulnerability. By denying the impacts of AGW on polar bears, bloggers aim to cast doubt on other established ecological consequences of AGW, aggravating the consensus gap. To counter misinformation and reduce this gap, scientists should directly engage the public in the media and blogosphere.

SELECTION OF CITATIONS
SEARCH DETAIL